Share this content in WeChat
Advances in magnetic resonance imaging studies in patients with cognitive impairment in type 2 diabetes mellitus
LI Renshi  HAN Xiaolin  HUA Mengyu  ZHUANG Xianghua  CHEN Shihong 

Cite this article as: Li RS, Han XL, Hua MY, et al. Advances in magnetic resonance imaging studies in patients with cognitive impairment in type 2 diabetes mellitus[J]. Chin J Magn Reson Imaging, 2022, 13(2): 108-111, 115. DOI:10.12015/issn.1674-8034.2022.02.026.

[Abstract] Type 2 diabetes mellitus causes structural and functional abnormalities in the brain and increases the risk of cognitive impairment. However, we are still unclear about the pathogenesis of cognitive impairment in type 2 diabetes mellitus. However advances in magnetic resonance imaging studies have further identified the neurological factors associated with type 2 diabetes mellitus leading to cognitive impairment. We systematically reviewed the literature on neuroimaging alterations in patients with type 2 diabetes mellitus that include changes in structure, brain function, and metabolites. Studies have shown that changes in the type 2 diabetes mellitus brain include atrophy of brain structures, high white matter signal, altered functional connectivity, cerebral microangiopathy, cerebral blood flow, and altered metabolites. Magnetic resonance imaging promises to further elucidate the basis of cognitive decline in type 2 diabetes mellitus and enable better diagnosis and treatment of the disease, offering potential translational opportunities for clinical intervention.
[Keywords] type 2 diabetes mellitus;cognitive impairment;structural magnetic resonance imaging;functional magnetic resonance imaging

LI Renshi   HAN Xiaolin   HUA Mengyu   ZHUANG Xianghua   CHEN Shihong*  

Department of Endocrinology, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China

Chen SH, E-mail:

Conflicts of interest   None.

Received  2021-09-08
Accepted  2022-01-30
DOI: 10.12015/issn.1674-8034.2022.02.026
Cite this article as: Li RS, Han XL, Hua MY, et al. Advances in magnetic resonance imaging studies in patients with cognitive impairment in type 2 diabetes mellitus[J]. Chin J Magn Reson Imaging, 2022, 13(2): 108-111, 115.DOI:10.12015/issn.1674-8034.2022.02.026

Roden M, Shulman GI. The integrative biology of type 2 diabetes[J]. Nature, 2019, 576(7785): 51-60. DOI: 10.1038/s41586-019-1797-8.
Palleria C, Leporini C, Maida F, et al. Potential effects of current drug therapies on cognitive impairment in patients with type 2 diabetes[J]. Front Neuroendocrinol, 2016, 42: 76-92. DOI: 10.1016/j.yfrne.2016.07.002.
Zhang WW, Liu YM, Bao H, et al. A new neurovascular panel discriminates between patients with type 2 diabetes mellitus with cognitive impairment and cognitive impairment alone[J]. J Alzheimers Dis, 2020, 75(2): 461-469. DOI: 10.3233/JAD-200095.
Wang YQ, Sun L, He GY, et al. Cerebral perfusion alterations in type 2 diabetes mellitus—a systematic review[J]. Front Neuroendocrinol, 2021, 62: 100916. DOI: 10.1016/j.yfrne.2021.100916.
Srikanth V, Sinclair AJ, Hill-Briggs F, et al. Type 2 diabetes and cognitive dysfunction—towards effective management of both comorbidities[J]. Lancet Diabetes Endocrinol, 2020, 8(6): 535-545. DOI: 10.1016/s2213-8587(20)30118-2.
Zhang W, Gao CL, Qing Z, et al. Hippocampal subfields atrophy contribute more to cognitive impairment in middle-aged patients with type 2 diabetes rather than microvascular lesions[J]. Acta Diabetol, 2021, 58(8): 1023-1033. DOI: 10.1007/s00592-020-01670-x.
Qin DX. Series fMRI research of cerebral metabolism and function in T2DM patients[D]. Tianjin: Tianjin Medical University, 2017.
Varon D, Loewenstein DA, Potter E, et al. Minimal atrophy of the entorhinal cortex and hippocampus: progression of cognitive impairment[J]. Dement Geriatr Cogn Disord, 2011, 31(4): 276-283. DOI: 10.1159/000324711.
Dou JT, Chen M, Dufour F, et al. Insulin receptor signaling in long-term memory consolidation following spatial learning[J]. Learn Mem, 2005, 12(6): 646-655. DOI: 10.1101/lm.88005.
Uysal G, Ozturk M. Hippocampal atrophy based Alzheimer's disease diagnosis via machine learning methods[J]. J Neurosci Methods, 2020, 337: 108669. DOI: 10.1016/j.jneumeth.2020.108669.
Biessels GJ, Reagan LP. Hippocampal insulin resistance and cognitive dysfunction[J]. Nat Rev Neurosci, 2015, 16(11): 660-671. DOI: 10.1038/nrn4019.
Hayashi K, Kurioka S, Yamaguchi T, et al. Association of cognitive dysfunction with hippocampal atrophy in elderly Japanese people with type 2 diabetes[J]. Diabetes Res Clin Pract, 2011, 94(2): 180-185. DOI: 10.1016/j.diabres.2011.07.002.
Cope EC, Gould E. Adult Neurogenesis in the Hippocampus: A Role in Learning and Memory-ScienceDirect[J]. Learning and Memory: A Comprehensive Reference (Second Edition), 2017:345-358. DOI: 10.1016/B978-0-12-809324-5.21115-2.
Oosterman JM, Oosterveld S, Rikkert MG, et al. Medial temporal lobe atrophy relates to executive dysfunction in Alzheimer's disease[J]. Int Psychogeriatr, 2012, 24(9): 1474-1482. DOI: 10.1017/S1041610212000506.
Milne NT, Bucks RS, Davis WA, et al. Hippocampal atrophy, asymmetry, and cognition in type 2 diabetes mellitus[J]. Brain Behav, 2017, 8(1): e00741. DOI: 10.1002/brb3.741.
Moran C, Phan TG, Chen J, et al. Brain atrophy in type 2 diabetes: regional distribution and influence on cognition[J]. Diabetes Care, 2013, 36(12): 4036-4042. DOI: 10.2337/dc13-0143.
Chen ZY, Sun J, Yang Y, et al. Cortical thinning in type 2 diabetes mellitus and recovering effects of insulin therapy[J]. J Clin Neurosci, 2015, 22(2): 275-279. DOI: 10.1016/j.jocn.2014.07.014.
Li C, Li CM, Yang QF, et al. Cortical thickness contributes to cognitive heterogeneity in patients with type 2 diabetes mellitus[J]. Medicine (Baltimore), 2018, 97(21): e10858. DOI: 10.1097/MD.0000000000010858.
van Harten B, de Leeuw FE, Weinstein HC, et al. Brain imaging in patients with diabetes[J]. Diabetes Care, 2006, 29(11): 2539-2548. DOI: 10.2337/dc06-1637.
Moran C, Beare R, Wang W, et al. Type 2 diabetes mellitus, brain atrophy, and cognitive decline[J]. Neurology, 2019, 92(8): e823-e830. DOI: 10.1212/wnl.0000000000006955.
Kaskikallio A, Karrasch M, Koikkalainen J, et al. White matter hyperintensities and cognitive impairment in healthy and pathological aging: a quantified brain MRI study[J]. Dement Geriatr Cogn Disord, 2019, 48(5/6): 297-307. DOI: 10.1159/000506124.
Mankovsky B, Zherdova N, van den Berg E, et al. Cognitive functioning and structural brain abnormalities in people with Type 2 diabetes mellitus[J]. Diabet Med, 2018, 35(12): 1663-1670. DOI: 10.1111/dme.13800.
Wang DQ, Wang L, Wei MM, et al. Relationship between type 2 diabetes and white matter hyperintensity: a systematic review[J]. Front Endocrinol (Lausanne), 2020, 11: 595962. DOI: 10.3389/fendo.2020.595962.
Brundel M, van den Heuvel M, de Bresser J, et al. Cerebral cortical thickness in patients with type 2 diabetes[J]. J Neurol Sci, 2010, 299(1/2): 126-130. DOI: 10.1016/j.jns.2010.08.048.
van Elderen SG, de Roos A, de Craen AJ, et al. Progression of brain atrophy and cognitive decline in diabetes mellitus: a 3-year follow-up[J]. Neurology, 2010, 75(11): 997-1002. DOI: 10.1212/WNL.0b013e3181f25f06.
Sun Q, Chen GQ, Wang XB, et al. Alterations of white matter integrity and hippocampal functional connectivity in type 2 diabetes without mild cognitive impairment[J]. Front Neuroanat, 2018, 12: 21. DOI: 10.3389/fnana.2018.00021.
Huang XQ, du XN, Song HQ, et al. Cognitive impairments associated with corpus callosum infarction: a ten cases study[J]. Int J Clin Exp Med, 2015, 8(11): 21991-21998.
Voineskos AN, Rajji TK, Lobaugh NJ, et al. Age-related decline in white matter tract integrity and cognitive performance: a DTI tractography and structural equation modeling study[J]. Neurobiol Aging, 2012, 33(1): 21-34. DOI: 10.1016/j.neurobiolaging.2010.02.009.
Reijmer YD, Brundel M, de Bresser J, et al. Microstructural white matter abnormalities and cognitive functioning in type 2 diabetes: a diffusion tensor imaging study[J]. Diabetes Care, 2013, 36(1): 137-144. DOI: 10.2337/dc12-0493.
Ogoh S. Relationship between cognitive function and regulation of cerebral blood flow[J]. J Physiol Sci, 2017, 67(3): 345-351. DOI: 10.1007/s12576-017-0525-0.
Chau ACM, Cheung EYW, Chan KH, et al. Impaired cerebral blood flow in type 2 diabetes mellitus - A comparative study with subjective cognitive decline, vascular dementia and Alzheimer's disease subjects[J]. Neuroimage Clin, 2020, 27: 102302. DOI: 10.1016/j.nicl.2020.102302.
Ryan CM, Geckle M. Why is learning and memory dysfunction in Type 2 diabetes limited to older adults?[J]. Diabetes Metab Res Rev, 2000, 16(5): 308-315. DOI: 10.1002/1520-7560(2000)9999:9999<:aid-dmrr141>;2-x.
Jansen JFA, van Bussel FCG, van de Haar HJ, et al. Cerebral blood flow, blood supply, and cognition in Type 2 Diabetes Mellitus[J]. Sci Rep, 2016, 6(1): 10. DOI: 10.1038/s41598-016-0003-6.
Cui Y, Liang X, Gu H, et al. Cerebral perfusion alterations in type 2 diabetes and its relation to insulin resistance and cognitive dysfunction[J]. Brain Imaging Behav, 2017, 11(5): 1248-1257. DOI: 10.1007/s11682-016-9583-9.
Johnson NA, Jahng GH, Weiner MW, et al. Pattern of cerebral hypoperfusion in Alzheimer disease and mild cognitive impairment measured with arterial spin-labeling MR imaging: initial experience[J]. Radiology, 2005, 234(3): 851-859. DOI: 10.1148/radiol.2343040197.
Stovell MG, Yan JL, Sleigh A, et al. Assessing metabolism and injury in acute human traumatic brain injury with magnetic resonance spectroscopy: current and future applications[J]. Front Neurol, 2017, 8: 426. DOI: 10.3389/fneur.2017.00426.
Wortmann SB, Mayr JA. Choline-related-inherited metabolic diseases-A mini review[J]. J Inherit Metab Dis, 2019, 42(2): 237-242. DOI: 10.1002/jimd.12011.
Barclay CJ. Energy demand and supply in human skeletal muscle[J]. J Muscle Res Cell Motil, 2017, 38(2): 143-155. DOI: 10.1007/s10974-017-9467-7.
Fisher SK, Novak JE, Agranoff BW. Inositol and higher inositol phosphates in neural tissues: homeostasis, metabolism and functional significance[J]. J Neurochem, 2002, 82(4): 736-754. DOI: 10.1046/j.1471-4159.2002.01041.x.
Reiman EM, Jagust WJ. Brain imaging in the study of Alzheimer's disease[J]. NeuroImage, 2012, 61(2): 505-516. DOI: 10.1016/j.neuroimage.2011.11.075.
Lin Y, Zhou J, Sha L, et al. Metabolite differences in the lenticular nucleus in type 2 diabetes mellitus shown by proton MR spectroscopy[J]. AJNR Am J Neuroradiol, 2013, 34(9): 1692-1696. DOI: 10.3174/ajnr.A3492.
Sinha S, Ekka M, Sharma U, et al. Assessment of changes in brain metabolites in Indian patients with type-2 diabetes mellitus using proton magnetic resonance spectroscopy[J]. BMC Res Notes, 2014, 7: 41. DOI: 10.1186/1756-0500-7-41.
Sahin I, Alkan A, Keskin L, et al. Evaluation of in vivo cerebral metabolism on proton magnetic resonance spectroscopy in patients with impaired glucose tolerance and type 2 diabetes mellitus[J]. J Diabetes Complications, 2008, 22(4): 254-260. DOI: 10.1016/j.jdiacomp.2007.03.007.
Zhang YZ, Liu Z, Ji B, et al. Metabolite profile of Alzheimer's disease in the frontal cortex as analyzed by HRMAS 1 H NMR[J]. Front Aging Neurosci, 2019, 10: 424. DOI: 10.3389/fnagi.2018.00424.
Wang Y, Xu XY, Feng CH, et al. Patients with type 2 diabetes exhibit cognitive impairment with changes of metabolite concentration in the left hippocampus[J]. Metab Brain Dis, 2015, 30(4): 1027-1034. DOI: 10.1007/s11011-015-9670-4.
Tiehuis A, van der Meer F, Mali W, et al. MR spectroscopy of cerebral white matter in type 2 diabetes; no association with clinical variables and cognitive performance[J]. Neuroradiology, 2010, 52(2): 155-161. DOI: 10.1007/s00234-009-0598-4.
Ogawa S, Lee TM, Nayak AS, et al. Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields[J]. Magn Reson Med, 1990, 14(1): 68-78. DOI: 10.1002/mrm.1910140108.
Scarapicchia V, Mazerolle EL, Fisk JD, et al. Resting state BOLD variability in Alzheimer's disease: a marker of cognitive decline or cerebrovascular status?[J]. Front Aging Neurosci, 2018, 10: 39. DOI: 10.3389/fnagi.2018.00039.
Sun DM, Ma Y, Sun ZB, et al. Decision-making in primary onset middle-age type 2 diabetes mellitus: a BOLD-fMRI study[J]. Sci Rep, 2017, 7(1): 10246. DOI: 10.1038/s41598-017-10228-x.
Huang RR, Jia BH, Xie L, et al. Spatial working memory impairment in primary onset middle-age type 2 diabetes mellitus: an ethology and BOLD-fMRI study[J]. J Magn Reson Imaging, 2016, 43(1): 75-87. DOI: 10.1002/jmri.24967.
Wang R, Liu N, Tao YY, et al. The application of rs-fMRI in vascular cognitive impairment[J]. Front Neurol, 2020, 11: 951. DOI: 10.3389/fneur.2020.00951.
He Y, Wang L, Zang YF, et al. Regional coherence changes in the early stages of Alzheimer's disease: a combined structural and resting-state functional MRI study[J]. Neuroimage, 2007, 35(2): 488-500. DOI: 10.1016/j.neuroimage.2006.11.042.
An L, Cao QJ, Sui MQ, et al. Local synchronization and amplitude of the fluctuation of spontaneous brain activity in attention-deficit/hyperactivity disorder: a resting-state fMRI study[J]. Neurosci Bull, 2013, 29(5): 603-613. DOI: 10.1007/s12264-013-1353-8.
Xiong Y, Chen XD, Zhao X, et al. Altered regional homogeneity and functional brain networks in Type 2 diabetes with and without mild cognitive impairment[J]. Sci Rep, 2020, 10(1): 21254. DOI: 10.1038/s41598-020-76495-3.
Xia WQ, Wang SH, Sun ZL, et al. Altered baseline brain activity in type 2 diabetes: a resting-state fMRI study[J]. Psychoneuroendocrinology, 2013, 38(11): 2493-2501. DOI: 10.1016/j.psyneuen.2013.05.012.
Liu DH, Duan SS, Wei P, et al. Aberrant brain spontaneous activity and synchronization in type 2 diabetes mellitus patients: a resting-state functional MRI study[J]. Front Aging Neurosci, 2020, 12: 181. DOI: 10.3389/fnagi.2020.00181.
Cui Y, Jiao Y, Chen YC, et al. Altered spontaneous brain activity in type 2 diabetes: a resting-state functional MRI study[J]. Diabetes, 2014, 63(2): 749-760. DOI: 10.2337/db13-0519.
Soman SM, Raghavan S, Rajesh PG, et al. Does resting state functional connectivity differ between mild cognitive impairment and early Alzheimer's dementia? [J]. J Neurol Sci, 2020, 418: 117093. DOI: 10.1016/j.jns.2020.117093.
Cai CT, Huang CX, Yang CH, et al. Altered patterns of phase position connectivity in default mode subnetwork of subjective cognitive decline and amnestic mild cognitive impairment[J]. Front Neurosci, 2020, 14: 185. DOI: 10.3389/fnins.2020.00185.
Hafkemeijer A, van der Grond J, Rombouts SARB. Imaging the default mode network in aging and dementia[J]. Biochim Biophys Acta, 2012, 1822(3): 431-441. DOI: 10.1016/j.bbadis.2011.07.008.
Li YF, Liang Y, Tan X, et al. Altered functional hubs and connectivity in type 2 diabetes mellitus without mild cognitive impairment[J]. Front Neurol, 2020, 11: 1016. DOI: 10.3389/fneur.2020.01016.
Fang F, Lai MY, Huang JJ, et al. Compensatory hippocampal connectivity in young adults with early-stage type 2 diabetes[J]. J Clin Endocrinol Metab, 2019, 104(7): 3025-3038. DOI: 10.1210/jc.2018-02319.
Zhang H, Hao Y, Manor B, et al. Intranasal insulin enhanced resting-state functional connectivity of hippocampal regions in type 2 diabetes[J]. Diabetes, 2015, 64(3): 1025-1034. DOI: 10.2337/db14-1000.
Zhou H, Lu WJ, Shi YM, et al. Impairments in cognition and resting-state connectivity of the hippocampus in elderly subjects with type 2 diabetes[J]. Neurosci Lett, 2010, 473(1): 5-10. DOI: 10.1016/j.neulet.2009.12.057.

PREV Progress of neuroimaging study on dietary improvement of cognitive impairment
NEXT Research progress on neuroimaging biomarkers of chemotherapy-related cognitive impairment in breast cancer

Tel & Fax: +8610-67113815    E-mail: