Share this content in WeChat
Progress of neuroimaging study on dietary improvement of cognitive impairment
LIU linhan  WANG Xiaochun 

Cite this article as: Liu LH, Wang XC. Progress of neuroimaging study on dietary improvement of cognitive impairment[J]. Chin J Magn Reson Imaging, 2022, 13(2): 105-107. DOI:10.12015/issn.1674-8034.2022.02.025.

[Abstract] Mild cognitive impairment (MCI) is considered to be a precursor to Alzheimer's disease (AD), so early diagnosis and treatment of patients with MCI is important to prevent and delay the progression to various types of dementia. At present, there is no clear drug treatment can significantly delay or change the course of AD development. Diet as a major part of lifestyle, a large number of studies have confirmed that certain nutrients, dietary patterns are associated with cognitive function and brain morphology or function, and can reduce the risk of AD and the transition from MCI to AD. With the development of imaging technology, the relationship between dietary factors and imageology in patients with cognitive impairment and the changes of neuroimageology after dietary improvement have gradually become a research hotspot both at home and abroad. This article reviewed the recent advances in neuroimaging of dietary intervention in cognitive impairment in order to explore the neuroimaging mechanism of dietary intervention and its clinical application.
[Keywords] cognitive function;diet;nutrients;functional magnetic resonance imaging;cerebral area

LIU linhan1   WANG Xiaochun2*  

1 Department of Medical Imaging, Shanxi Medical University, Taiyuan 030001, China

2 Department of Radiology, the First Hospital of Shanxi Medical University, Taiyuan 030001, China

Wang XC, E-mail:

Conflicts of interest   None.

ACKNOWLEDGMENTS National Natural Science Foundation of China (No. 81971592); Key Research and Development Projects of Shanxi Province (No. 201903D321189).
Received  2021-09-27
Accepted  2022-01-30
DOI: 10.12015/issn.1674-8034.2022.02.025
Cite this article as: Liu LH, Wang XC. Progress of neuroimaging study on dietary improvement of cognitive impairment[J]. Chin J Magn Reson Imaging, 2022, 13(2): 105-107. DOI:10.12015/issn.1674-8034.2022.02.025.

Petersen RC, Doody R, Kurz A, et al. Current concepts in mild cognitive impairment[J]. Arch Neurol, 2001, 58(12): 1985-1992. DOI: 10.1001/archneur.58.12.1985.
Albert MS, DeKosky ST, Dickson D, et al. The diagnosis of mild cognitive impairment due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease[J]. Alzheimer's Dement, 2011, 7(3): 270-279. DOI: 10.1016/j.jalz.2011.03.008.
Petersen RC, Lopez O, Armstrong MJ, et al. Practice guideline update summary: mild cognitive impairment: report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology[J]. Neurology, 2018, 90(3): 126-135. DOI: 10.1212/WNL.0000000000004826.
Anderson-Hanley C, Barcelos NM, Zimmerman EA, et al. The aerobic and cognitive exercise study (ACES) for community-dwelling older adults with or at-risk for mild cognitive impairment (MCI): neuropsychological, neurobiological and neuroimaging outcomes of a randomized clinical trial[J]. Front Aging Neurosci, 2018, 10: 76. DOI: 10.3389/fnagi.2018.00076.
Lourida I, Hannon E, Littlejohns TJ, et al. Association of lifestyle and genetic risk with incidence of dementia[J]. JAMA, 2019, 322(5): 430-437. DOI: 10.1001/jama.2019.9879.
Yin ZX, Chen J, Zhang J, et al. Dietary patterns associated with cognitive function among the older people in underdeveloped regions: finding from the NCDFaC study[J]. Nutrients, 2018, 10(4): E464. DOI: 10.3390/nu10040464.
Jacka FN, Cherbuin N, Anstey KJ, et al. Western diet is associated with a smaller hippocampus: a longitudinal investigation[J]. BMC Med, 2015, 13: 215. DOI: 10.1186/s12916-015-0461-x.
Bramorska A, Zarzycka W, Podolecka W, et al. Age-related cognitive decline may be moderated by frequency of specific food products consumption[J]. Nutrients, 2021, 13(8): 2504. DOI: 10.3390/nu13082504.
Luciano M, Corley J, Cox SR, et al. Mediterranean-type diet and brain structural change from 73 to 76 years in a Scottish cohort[J]. Neurology, 2017, 88(5): 449-455. DOI: 10.1212/WNL.0000000000003559.
Otsuka R, Nishita Y, Nakamura A, et al. Dietary diversity is associated with longitudinal changes in hippocampal volume among Japanese community dwellers[J]. Eur J Clin Nutr, 2021, 75(6): 946-953. DOI: 10.1038/s41430-020-00734-z.
Hosking DE, Eramudugolla R, Cherbuin N, et al. MIND not Mediterranean diet related to 12-year incidence of cognitive impairment in an Australian longitudinal cohort study[J]. Alzheimers Dement, 2019, 15(4): 581-589. DOI: 10.1016/j.jalz.2018.12.011.
Li W, Sun L, Yue L, et al. The association between eating green vegetables every day and mild cognitive impairment: a community-based cross-sectional study in Shanghai[J]. Neuropsychiatr Dis Treat, 2019, 15: 3213-3218. DOI: 10.2147/NDT.S221074.
Nuzzo D, Amato A, Picone P, et al. A natural dietary supplement with a combination of nutrients prevents neurodegeneration induced by a high fat diet in mice[J]. Nutrients, 2018, 10(9): E1130. DOI: 10.3390/nu10091130.
Tangney CC, Li H, Wang YM, et al. Relation of DASH- and Mediterranean-like dietary patterns to cognitive decline in older persons[J]. Neurology, 2014, 83(16): 1410-1416. DOI: 10.1212/WNL.0000000000000884.
Godos J, Castellano S, Marranzano M. Adherence to a Mediterranean dietary pattern is associated with higher quality of life in a cohort of Italian adults[J]. Nutrients, 2019, 11(5): E981. DOI: 10.3390/nu11050981.
di Daniele N, di Renzo L, Noce A, et al. Effects of Italian Mediterranean organic diet vs. low-protein diet in nephropathic patients according to MTHFR genotypes[J]. J Nephrol, 2014, 27(5): 529-536. DOI: 10.1007/s40620-014-0067-y.
Andrade V, Jorge R, García-Conesa MT, et al. Mediterranean diet adherence and subjective well-being in a sample of Portuguese adults[J]. Nutrients, 2020, 12(12): E3837. DOI: 10.3390/nu12123837.
Brickman AM, Khan UA, Provenzano FA, et al. Enhancing dentate gyrus function with dietary flavanols improves cognition in older adults[J]. Nat Neurosci, 2014, 17(12): 1798-1803. DOI: 10.1038/nn.3850.
Berti V, Walters M, Sterling J, et al. Mediterranean diet and 3-year Alzheimer brain biomarker changes in middle-aged adults[J]. Neurology, 2018, 90(20): e1789-e1798. DOI: 10.1212/WNL.0000000000005527.
Phillips MCL, Deprez LM, Mortimer GMN, et al. Randomized crossover trial of a modified ketogenic diet in Alzheimer's disease[J]. Alzheimers Res Ther, 2021, 13(1): 51. DOI: 10.1186/s13195-021-00783-x.
Fortier M, Castellano CA, Croteau E, et al. A ketogenic drink improves brain energy and some measures of cognition in mild cognitive impairment[J]. Alzheimers Dement, 2019, 15(5): 625-634. DOI: 10.1016/j.jalz.2018.12.017.
Yomogida Y, Matsuo J, Ishida I, et al. An fMRI investigation into the effects of ketogenic medium-chain triglycerides on cognitive function in elderly adults: a pilot study[J]. Nutrients, 2021, 13(7): 2134. DOI: 10.3390/nu13072134.
Appel LJ, Brands MW, Daniels SR, et al. Dietary approaches to prevent and treat hypertension: a scientific statement from the American Heart Association[J]. Hypertension, 2006, 47(2): 296-308. DOI: 10.1161/01.HYP.0000202568.01167.B6.
Morris MC, Tangney CC, Wang YM, et al. MIND diet associated with reduced incidence of Alzheimer's disease[J]. Alzheimers Dement, 2015, 11(9): 1007-1014. DOI: 10.1016/j.jalz.2014.11.009.
Cummings JL. Food for thought: souvenaid® in mild Alzheimer's disease[J]. J Alzheimer's Dis, 2012, 31(1): 237-238. DOI: 10.3233/jad-2012-121297.
Scheltens P, Kamphuis PJGH, Verhey FRJ, et al. Efficacy of a medical food in mild Alzheimer's disease: a randomized, controlled trial[J]. Alzheimers Dement, 2010, 6(1): 1-10.e1. DOI: 10.1016/j.jalz.2009.10.003.
Scheltens P, Twisk JW, Blesa R, et al. Efficacy of Souvenaid in mild Alzheimer's disease: results from a randomized, controlled trial[J]. J Alzheimers Dis, 2012, 31(1): 225-236. DOI: 10.3233/JAD-2012-121189.
Wiesmann M, Zerbi V, Jansen D, et al. A dietary treatment improves cerebral blood flow and brain connectivity in aging apoE4 mice[J]. Neural Plast, 2016, 2016: 6846721. DOI: 10.1155/2016/6846721.
Stavrinou PS, Andreou E, Aphamis G, et al. The effects of a 6-month high dose Omega-3 and Omega-6 polyunsaturated fatty acids and antioxidant vitamins supplementation on cognitive function and functional capacity in older adults with mild cognitive impairment[J]. Nutrients, 2020, 12(2): E325. DOI: 10.3390/nu12020325.
Gu YA, Vorburger RS, Gazes Y, et al. White matter integrity as a mediator in the relationship between dietary nutrients and cognition in the elderly[J]. Ann Neurol, 2016, 79(6): 1014-1025. DOI: 10.1002/ana.24674.
Köbe T, Witte AV, Schnelle A, et al. Combined omega-3 fatty acids, aerobic exercise and cognitive stimulation prevents decline in gray matter volume of the frontal, parietal and cingulate cortex in patients with mild cognitive impairment[J]. Neuroimage, 2016, 131: 226-238. DOI: 10.1016/j.neuroimage.2015.09.050.
Yang T, Wang HL, Xiong Y, et al. Vitamin D supplementation improves cognitive function through reducing oxidative stress regulated by telomere length in older adults with mild cognitive impairment: a 12-month randomized controlled trial[J]. J Alzheimers Dis, 2020, 78(4): 1509-1518. DOI: 10.3233/JAD-200926.
Lu RH, Fang Y, Zhou YJ, et al. A pilot study of thiamin and folic acid in hemodialysis patients with cognitive impairment[J]. Ren Fail, 2021, 43(1): 766-773. DOI: 10.1080/0886022X.2021.1914656.
Lau H, Shahar S, Mohamad M, et al. Relationships between dietary nutrients intake and lipid levels with functional MRI dorsolateral prefrontal cortex activation[J]. Clin Interv Aging, 2019, 14: 43-51. DOI: 10.2147/CIA.S183425.
Goni L, Fernández-Matarrubia M, Romanos-Nanclares A, et al. Polyphenol intake and cognitive decline in the Seguimiento Universidad de Navarra (SUN) Project[J]. Br J Nutr, 2021, 126(1): 43-52. DOI: 10.1017/S000711452000392X.
Dong SZ, Zeng QW, Mitchell ES, et al. Curcumin enhances neurogenesis and cognition in aged rats: implications for transcriptional interactions related to growth and synaptic plasticity[J]. PLoS One, 2012, 7(2): e31211. DOI: 10.1371/journal.pone.0031211.

PREV Granulosa cell tumor in the vastus lateralis of the right thigh: One case report
NEXT Advances in magnetic resonance imaging studies in patients with cognitive impairment in type 2 diabetes mellitus

Tel & Fax: +8610-67113815    E-mail: