Share:
Share this content in WeChat
X
Experience Exchanges
Characteristics of blood oxygen level-dependent fMRI time-signal intensity curve in amyotrophic lateral sclerosis and nerve damage
YING Weifeng  HE Yang  CHEN Qiong  ZHANG Ying  YE Fei  SUN Xiaojia  CHEN Lijuan  YUAN Tianwen  CAO Jun 

Cite this article as: Ying WF, He Y, Chen Q, et al. Characteristics of blood oxygen level-dependent fMRI time-signal intensity curve in amyotrophic lateral sclerosis and nerve damage[J]. Chin J Magn Reson Imaging, 2022, 13(2): 79-82. DOI:10.12015/issn.1674-8034.2022.02.016.


[Abstract] Objective To analyze the type of time-signal intensity curve (TIC) of blood oxygen level-dependent functional magnetic resonance imaging (BOLD-fMRI) fed back by motor center and sensory center in patients with amyotrophic lateral sclerosis (ALS), and the correlation of TIC fed back by the motor and sensory centers.Materials and Methods Eighteen clinically diagnosed ALS patients (ALS group) and 18 age and gender-matched healthy volunteers (control group) were selected. All subjects signed the informed consent and were right-footed. The right toe was asked to stretch dorsally and regularly, the dorsal skin of the lower part of the right lower leg was stimulated regularly using a blunt-headed bamboo stick, and brain BOLD scanning was performed to detect the feedback of motor and sensory centers. The distribution of TIC types in the highest motor and sensory feedback areas of the two groups were statistically compared. According to the TIC slope grade score, the correlation of TIC type in the highest motor and sensory feedback areas in the ALS group was analyzed by Spearman correlation analysis.Results In the highest motor feedback area of the brain, descending TIC: the ALS group>the control group (P<0.001), horizontal TIC: the ALS group<the control group (P<0.001), ascending TIC: the ALS group=the control group (P=1.00). In the highest sensory feedback area of the brain, descending TIC: the ALS group<the control group (P=0.221), horizontal TIC: the ALS group<the control group (P<0.001), ascending TIC: the ALS group>the control group (P<0.001). In the ALS group, the descending TIC in the highest motor feedback area was correlated with the ascending TIC in the highest sensory feedback area (P<0.05).Conclusions In BOLD-fMRI in ALS, descending TIC is more common in motor feedback, while ascending TIC is more common in sensory feedback. Their TIC slopes have a strong negative correlation.
[Keywords] magnetic resonance imaging;blood oxygen level-dependent;functional magnetic resonance imaging;amyotrophic lateral sclerosis

YING Weifeng1   HE Yang2*   CHEN Qiong1   ZHANG Ying1   YE Fei1   SUN Xiaojia1   CHEN Lijuan1   YUAN Tianwen2   CAO Jun2  

1 Department of Radiology, Dahua Hospital, Xuhui District, Shanghai 200237, China

2 Department of Interventional Oncology, Dahua Hospital, Xuhui District, Shanghai 200237, China

He Y, E-mail: 411434316@qq.com

Conflicts of interest   None.

ACKNOWLEDGMENTS Scientific Research Project Planning Task in Xuhui District, Shanghai (No. SHXH201808).
Received  2021-08-13
Accepted  2021-12-28
DOI: 10.12015/issn.1674-8034.2022.02.016
Cite this article as: Ying WF, He Y, Chen Q, et al. Characteristics of blood oxygen level-dependent fMRI time-signal intensity curve in amyotrophic lateral sclerosis and nerve damage[J]. Chin J Magn Reson Imaging, 2022, 13(2): 79-82. DOI:10.12015/issn.1674-8034.2022.02.016.

[1]
Jelsone-Swain L, Persad C, Burkard D, et al. Action processing and mirror neuron function in patients with amyotrophic lateral sclerosis: an fMRI study[J]. PLoS One, 2015, 10(4): e0119862. DOI: 10.1371/journal.pone.0119862.
[2]
Isak B, Tankisi H, Johnsen B, et al. Involvement of distal sensory nerves in amyotrophic lateral sclerosis[J]. Muscle Nerve, 2016, 54(6): 1086-1092. DOI: 10.1002/mus.25157.
[3]
Shellikeri S, Myers M, Black SE, et al. Speech network regional involvement in bulbar ALS: a multimodal structural MRI study[J]. Amyotroph Lateral Scler Frontotemporal Degener, 2019, 20(5-6): 385-395. DOI: 10.1080/21678421.2019.1612920.
[4]
Pratt AJ, Getzoff ED, Perry JJP. Amyotrophic lateral sclerosis: Updata and new developments[J]. Degener Neurol Neuromuscul Dis, 2012, 2012(2): 1-14. DOI: 10.2147/DNND.S19803.
[5]
Sato M, Nakamura T, Nagashima K, et al. Prolonged distal latency of the median motor nerve is associated with poor prognosis in amyotrophic lateral sclerosis[J]. Neurol Res, 2020, 15: 1-8. DOI: 10.1080/01616412.2020.1834291.
[6]
Lei L, Chen H, Lu Y, et al. Unusual electrophysiological findings in a Chinese ALS 4 family with SETX-L389S mutation: a three-year follow-up[J]. J Neurol, 2021, 268(3): 1050-1058. DOI: 10.1007/s00415-020-10246-2. DOI: .
[7]
Wang J, Zheng SY, Huang P. Current status of spinal cord MRI study of amyotrophic lateral sclerosis[J]. Chin J Magn Reson Imaging, 2020, 11(11): 1048-1050. DOI: 10.12015/issn.1674-8034.2020.11.021.
[8]
Rajagopalan V, Pioro EP. Unbiased MRI Analyses Identify Micropathologic Differences Between Upper Motor Neuron-Predominant ALS Phenotypes[J]. Front Neurosci, 2019, 13: 704. DOI: 10.3389/fnins.2019.00704.
[9]
Bao YW, Pang Y, Sun ZY, et al. To evaluate the oxygenation function of normal placenta and lacenta accreta by BOLD-MRI[J]. Chin J Magn Reson Imaging, 2018, 9(11): 825-830. DOI: 10.12015/issn.1674-8034.2018.11.005.
[10]
Pang Y, Bao YW, Sun ZY, et a1. A preliminary study of changes in placental Oxygenation during matemal hyperoxia with BOLD MRI[J]. Radio Practice,2018, 33(3): 290-293. DOI: 10.13609/j.cnki.1000-0313.2018.03.013.
[11]
Yan YC, Jin EH, Yang ZH, et al. Application of R2* value in the differential diagnosis of the peripheral enhancement of hepatocellular carcinoma after radiofrequency ablation[J]. Radio Practice, 2021, 36(4): 431-435. DOI: 10.13609/j.cnki.1000-0313.2021.04.003.
[12]
Pinto WBVR, Nunes PP, Teixeira ILE, et al. O'Sullivan-McLeod syndrome: Unmasking a rare atypical motor neuron disease[J]. Rev Neurol (Paris), 2019, 175(1-2): 81-86. DOI: 10.1016/j.neurol.2018.04.009.
[13]
Philip BA, Thompson MR, Baune NA,et al. Failure to Compensate: Nerve Injury Patients Use Their Injured Dominant Hand, Even When Their Non-Dominant is More Dexterous[J]. Arch Phys Med Rehabil, 2021, 10(30): S0003-9993(21)01520-3. DOI: 10.1016/j.apmr.2021.10.010.
[14]
Han J, Ma L, Lou X, et al. Blood oxygenation level dependent functional MRI study on the changes of motor cortex in patients with amyotrophic lateral sclerosis[J]. Chin J Radio, 2008, 42(4): 350-354. DOI: 10.3321/j.issn:1005-1201.2008.04.003.
[15]
Isak B, Tankisi H, Johnsen B, et al. Involvement of distal sensory nerves in amyotrophic lateral sclerosis[J]. Muscle Nerve, 2016, 54(6): 1086-1092. DOI: 10.1002/mus.25157.
[16]
Nolano M, Provitera V, Manganelli F, et al. Non-motor involvement in amyotrophic lateral sclerosis: new insight from nerve and vessel analysis in skin biopsy[J]. Neuropathol Appl Neurobiol, 2017, 43(2): 119-132. DOI: 10.1111/nan.12332.
[17]
Akaishi T, Takahashi T, Abe M, et al. Consideration of gravity as a possible etiological factor in amyotrophic lateral sclerosis[J]. Med Hypotheses, 2019, 132: 109369. DOI: 10.1016/j.mehy.2019.109369.
[18]
Taniguchi T, Hokezu Y, Okada T, et al. A amyotrophic lateral sclerosis (ALS) 4 family misdiagnosed as hereditary spastic paraplegia-a case report[J]. Rinsho Shinkeigaku, 2017, 57(11): 685-690. DOI: 10.5692/clinicalneurol.cn-000996.
[19]
Matamala JM, Howells J, Dharmadasa T, et al. Excitability of sensory axons in amyotrophic lateral sclerosis[J]. Clin Neurophysiol, 2018, 129(7): 1472-1478. DOI: 10.1016/j.clinph.2018.03.014.
[20]
Cavallaro T, Tagliapietra M, Fabrizi GM, et al. Hereditary neuropathies: A pathological perspective[J]. J Peripher Nerv Syst, 2021, 26(S2): S42-S60. DOI: 10.1111/jns.12467.
[21]
Sangari S, Iglesias C, Mendili MME, et al. Impairment of sensory-motor integration at spinal level in amyotrophic lateral sclerosis[J]. Clin Neurophysiol, 2016, 127(4): 1968-1977. DOI: 10.1016/j.clinph.2016.01.014.
[22]
Shimizu T, Bokuda K, Kimura H, et al. Sensory cortex hyperexcitability predicts short survival in amyotrophic lateral sclerosis[J]. Neurology, 2018, 90(18): e1578-e1587. DOI: 10.1212/WNL.0000000000005424.
[23]
Imai E, Nakamura T, Atsuta N, et al. A nerve conduction study predicts the prognosis of sporadic amyotrophic lateral sclerosis[J]. J Neurol, 2020, 267(9): 2524-2532. DOI: 10.1007/s00415-020-09858-5.
[24]
Shields LBE, Iyer VG, Zhang YP, et al. Useless hand syndrome: Diagnostic role of electromyography and nerve conduction studies[J]. Mult Scler Relat Disord, 2021, 49: 102792. DOI: 10.1016/j.msard.2021.102792.
[25]
Carson RG, Buick AR. Neuromuscular electrical stimulation-promoted plasticity of the human brain[J]. J Physiol, 2021, 599(9): 2375-2399. DOI: 10.1113/JP278298.

PREV Diagnosis of cerebral venous thrombosis in children: Comparative study of 3D Brainview T1W black blood sequence and 3D CE-MRV sequence
NEXT Comparison of value of three MRI perfusion techniques in the preoperative assessment of brain glioma grading
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn