Share this content in WeChat
Experience Exchanges
Diagnosis of cerebral venous thrombosis in children: Comparative study of 3D Brainview T1W black blood sequence and 3D CE-MRV sequence
LÜ Yanqiu  TAO Xiaojuan  CHENG Hua  YIN Guangheng  HU Di  HONG Tianyu  XU Huijuan  PENG Yun 

Cite this article as: Lü YQ, Tao XJ, Cheng H, et al. Diagnosis of cerebral venous thrombosis in children: Comparative study of 3D Brainview T1W black blood sequence and 3D CE-MRV sequence[J]. Chin J Magn Reson Imaging, 2022, 13(2): 75-78. DOI:10.12015/issn.1674-8034.2022.02.015.

[Abstract] Objective To retrospectively evaluate the performance of 3D Brainview T1W black blood sequence for diagnosis of cerebral venous thrombosis (CVT) in children.Materials and Methods This retrospective study included 25 children who had clinical symptoms suggesting CVT or with known CVT with MRIs performed with 3D Brainview T1W and 3D contrast-enhanced (CE) magnetic resonance venography (MRV) sequences on a 3.0 T scanner, and 10 of them also were performed with routine MRI and 3D phase-contrast (PC) MRV. Two neuroradiologists blindly reviewed 3D Brainview T1W and 3D CE-MRV images to obtain a diagnositic outcome for the presence or absence of CVT for each sequence, respectively. Final diagnostic reference standard was based on clinical diagnosis. The inter-observer agreement for the diagnosis of CVT was evaluated by using Kappa analysis for 3D Brainview T1W. Sensitivity/Specificity was used to assess the diagnostic performance of 3D Brainview T1W and 3D CE-MRV against the final diagnostic reference standard.Results The inter-observer agreement in the diagnosis of CVT was high for 3D Brainview T1W sequence (κ=0.95). The sensitivity/specificity for 3D Brainview T1W and 3D CE-MRV were 97.1%/99.6% and 91.4%/99.2%, respectively. There was no significant difference between 3D Brainview T1W and 3D CE-MRV in the diagnosis of CVT. However, 3D Brainview T1W provided more details of thrombi and diagnostic information.Conclusions 3D Brainview T1W showed the excellent performance in the diagnosis of CVT in children.
[Keywords] magnetic resonance imaging;sinus thrombosis;cerebral venous thrombosis;stroke;children

LÜ Yanqiu   TAO Xiaojuan   CHENG Hua   YIN Guangheng   HU Di   HONG Tianyu   XU Huijuan   PENG Yun*  

Department of Radiology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China

Peng Y, E-mail:

Conflicts of interest   None.

Received  2021-09-29
Accepted  2022-01-26
DOI: 10.12015/issn.1674-8034.2022.02.015
Cite this article as: Lü YQ, Tao XJ, Cheng H, et al. Diagnosis of cerebral venous thrombosis in children: Comparative study of 3D Brainview T1W black blood sequence and 3D CE-MRV sequence[J]. Chin J Magn Reson Imaging, 2022, 13(2): 75-78. DOI:10.12015/issn.1674-8034.2022.02.015.

Connor SE, Jarosz JM. Magnetic resonance imaging of cerebral venous siuus thrombosis[J]. Clin Radiol, 2002, 57(6): 449-461. DOI: 10.1053/crad.2001.0880.
Maali L, Khan S, Qeadan F, et al. Cerebral venous thrombosis: continental disparities[J]. Neurol Sci , 2017, 38(11): 1963-1968. DOI: 10.1007/s10072-017-3082-7.
Stam J. Thrombosis of the Cerebral Veins and Sinuses[J]. N Engl J Med, 2005, 352(17): 1791-1798. DOI: 10.1056/NEJMra042354.
Teksam M, Moharir M, deVeber G, et al. Frequency and Topographic Distribution of Brain Lesions in Pediatric Cerebral Venous Thrombosis[J]. AJNR Am J Neuroradiol, 2008, 29(10): 1961-1965. DOI: 10.3174/ajnr.A1246.
Ghoneim A, Straiton J, Pollard C, et al. Imaging of cerebral venous thrombosis[J]. Clin Radiol, 2020, 75(4): 254-264. DOI: 10.1016/j.crad.2019.12.009.
Sari S, Verim S, Hamcan S, et al. MRI diagnosis of dural sinus-Cortical venous thrombosis:Immediate post-contrast 3D GRE T1-weighted imaging versus unenhanced MR venography and conventional MR Sequence[J]. Clin Neurol Neurosurg, 2015, 134: 44-54. DOI: 10.1016/j.clineuro.2015.04.013.
Widjaja E, Griffiths PD. Intracranial MR venography in children: normal anatomy an variations[J]. AJNR Am J Neuroradiol, 2004, 25(9): 1557-1562.
Dmytriw AA, Song JS, Yu E, et al. Cerebral venous thrombosis: state of the art diagnosis and management[J]. Neuroradiology, 2018, 60(7): 669-685. DOI: 10.1007/s00234-018-2032-2.
Fraum TJ, Ludwig DR, Bashir MR, et al. Gadolinium-based contrast agents: a comprehensive risk assessment[J]. J Magn Reson Imaging, 2017, 46(2): 338-353. DOI: 10.1002/jmri.25625.
Haroun A. Utility of contrast-enhanced 3D turbo-flash MR angiography in evaluating the intracranial venous system[J]. Neuroradiology, 2005, 47(5): 322-327. DOI: 10.1007/s00234-004-1311-2.
Xu RM, Wang XC. Imaging analysis of prognostic evaluation of cerebral venous and sinus thrombosis[J]. Chin J Magn Reson Imaging, 2021, 12(4): 93-95, 99. DOI: 10.12015/issn.1674-8034.2021.04.023.
Ferro JM, Canhão P, Stam J, et al. Prognosis of cerebral vein and dural sinus thrombosis: results of the International Study on Cerebral Vein and Dural Sinus Thrombosis (ISCVT)[J]. Stroke, 2004, 35(3): 664-670. DOI: 10.1161/01.STR.0000117571.76197.26.
Konakondla S, Schirmer CM, Li F, et al. New developments in the pathophysiology, workup, and diagnosis of dural venous sinus thrombosis (DVST) and a systematic review of endovascular treatments[J]. Aging Dis, 2017, 8(2): 136-148. DOI: 10.14336/AD.2016.0915.
Yang Q, Duan JG, Fan ZY, et al. Early detection and quantification of cerebral venous thrombosis by magnetic resonance black-blood thrombus imaging[J]. Stroke, 2015, 47(2): 404-409. DOI: 10.1161/STROKEAHA.115.011369.
Niu PP, Yao Y, Guo ZN, et al. Diagnosis of non-acute cerebral venousthrombosis with 3D T1-weighted black blood sequence at 3T[J]. J Neurol SCI, 2016, 367: 46-50. DOI: 10.1016/j.jns.2016.05.052.
Canhao P, Ferro JM, Lindgren AG, et al. Causes and predictors of death in cerebral venous thrombosis[J]. Stroke, 2005, 36(8): 1720-1725. DOI: 10.1161/01.STR.0000173152.84438.1c.
Reichenbach JR, Venkatesan R, Schillinger DJ, et al. Small vessels in the human brain: MR venography with deoxyhemoglobin as an intrinsic contrast agent[J]. Radiology, 1997, 204(1): 272-277. DOI: 10.1148/radiology.204.1.9205259.
Murumkar V, Goyal S, Priyadarshini BP, et al. Isolated thrombosis of cortical veins- Clinical and radiological correlation[J]. J Clin Neurosci, 2021, 91: 369-377. DOI: 10.1016/j.jocn.2021.07.018.
Halefoglu AM, Yousem DM. Susceptibility weighted imaging: Clinical applications and future directions[J]. World J Radiol, 2018, 10(4): 30-45. DOI: 10.4329/wjr.v10.i4.30.
Sato T, Terasawa Y, Mitsumura H, et al. Venous stasis and cerebrovascular complications in cerebral venous sinus thrombosis[J]. Eur Neurol, 2017, 78(3-4): 154-160. DOI: 10.1159/000478980.
Lettau M, Sartor K, Heiland S, Hähnel S. 3T. HighSpatial-Resolution Contrast-Enhanced MR. Angiography of the Intracranial Venous System with Parallel Imaging[J]. AJNR Am J Neuroradiol, 2009, 30: 185-187.
Bäuerle T, Saake M, Uder M. Gadolinium-based contrast agents: What we learned from acute adverse events, nephrogenic systemic fibrosis and brain retention[J]. Rofo, 2021, 193(9): 1010-1018. DOI: 10.1055/a-1328-3177.
Klingebiel R, Bauknecht HC, Bohner G, et al. Comparative evaluation of 2D time-of-flight and 3D elliptic centric contrast-enhanced MR venography in patients with presumptive cerebral venous and sinus thrombosis[J]. Eur J Neurol, 2007, 14: 139-143. DOI: 10.1111/j.1468-1331.2006.01574.x.
Song SY , Dornbos D , Lan D , et al. High-Resolution Magnetic Resonance Black Blood Thrombus Imaging and Serum D-Dimer in the Confirmation of Acute Cortical Vein Thrombosis[J]. Front Neurol, 2021, 12: 680040. DOI: 10.3389/fneur.2021.680040.
Dormont D, Sag K, Biondi A, Wechsler B, et al. Gadolinium-enhanced MR of chronic dural sinus thrombosis[J]. AJNR American Journal of Neuroradiology, 1995, 16: 1347-1352.

PREV Intravoxel incoherent motion diffusion-weighted imaging for assessment of the differential diagnosis and Gleason grade in prostate cancer: a Meta-analysis
NEXT Characteristics of blood oxygen level-dependent fMRI time-signal intensity curve in amyotrophic lateral sclerosis and nerve damage

Tel & Fax: +8610-67113815    E-mail: