Share:
Share this content in WeChat
X
Original Article
A fMRI study of hippocampal functional connectivity changes in benign childhood epilepsy with centrotemporal spikes
MA Xueying  BAN Chao  ZHAO Pengfei  NIU Guangming  QIAO Pengfei 

Cite this article as: Ma XY, Ban C, Zhao PF, et al. A fMRI study of hippocampal functional connectivity changes in benign childhood epilepsy with centrotemporal spikes[J]. Chin J Magn Reson Imaging, 2022, 13(2): 22-25. DOI:10.12015/issn.1674-8034.2022.02.005.


[Abstract] Objective To detect the changes of functional connection between subregions of the hippocampus and the whole brain in children benign epilepsy with centrotemporal spikes (BECTS) and analyze the potential neural mechanism and clinical value.Materials and Methods The resting state blood oxygen level-dependent functional magnetic resonance imaging (BOLD-fMRI) whole brain data of forty-four BECTS patients and thirty-five age-and sex-matched healthy controls were prospectively collected. Functional connectivity analysis method based on seed points was used to analyze the functional connection between the anterior and posterior hippocampus and the whole brain respectively.Results Compared with healthy controls, functional connectivity between the left anterior hippocampus and the right precuneus, the right inferior parietal lobule, and the left middle temporal gyrus was decreased in BECTS children (P<0.001). The functional connectivity between the right anterior hippocampus and the left middle temporal gyrus temporal pole, right parahippocampal gyrus, and right middle frontal gyrus orbital was decreased (P<0.001); The functional connectivity between the left posterior hippocampus and the left hippocampus and the right inferior parietal lobule was decreased (P<0.001); The functional connectivity between the right posterior hippocampus and the right lingual gyrus and the right parahippocampal gyrus was increased (P<0.001).Conclusions The functional connectivity between the hippocampus and the whole brain in BECTS children was changed, which had a great significance on understanding the underlying neuropathological mechanism of BECTS.
[Keywords] benign childhood epilepsy with centrotemporal spikes;hippocampus;functional connectivity;resting state;blood oxygen level dependent;functional magnetic resonance imaging

MA Xueying   BAN Chao   ZHAO Pengfei   NIU Guangming   QIAO Pengfei*  

Department of Imaging Diagnosis, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010030, China

Qiao PF, E-mail: qpfff@126.com

Conflicts of interest   None.

ACKNOWLEDGMENTS The Project of Science and Technology Department of Inner Mongolia (No. 2019GG110).
Received  2021-07-12
Accepted  2021-12-28
DOI: 10.12015/issn.1674-8034.2022.02.005
Cite this article as: Ma XY, Ban C, Zhao PF, et al. A fMRI study of hippocampal functional connectivity changes in benign childhood epilepsy with centrotemporal spikes[J]. Chin J Magn Reson Imaging, 2022, 13(2): 22-25. DOI:10.12015/issn.1674-8034.2022.02.005.

[1]
Zhang Q, He Y, Qu T, et al. Delayed brain development of rolandic epilepsy profiled by deep learning-based neuroanatomic imaging[J]. Eur Radiol, 2021, 31(12): 9628-9637. DOI: 10.1007/s00330-021-08048-9.
[2]
Parisi P, Paolino MC, Raucci U, et al. "Atypical forms" of benign epilepsy with centrotemporal spikes (bects): How to diagnose and guide these children. A practical/scientific approach[J]. Epilepsy Behav, 2017, 75: 165-169. DOI: 10.1016/j.yebeh.2017.08.001.
[3]
Wang F, Yin Y, Yang Y, et al. Connectome-based prediction of brain age in rolandic epilepsy: A protocol for a multicenter cross-sectional study[J]. Ann Transl Med, 2021, 9(6): 511. DOI: 10.21037/atm-21-574.
[4]
Baumer FM, Pfeifer K, Fogarty A, et al. Cortical excitability, synaptic plasticity, and cognition in benign epilepsy with centrotemporal spikes: A pilot tms-emg-eeg study[J]. J Clin Neurophysiol, 2020, 37(2): 170-180. DOI: 10.1097/wnp.0000000000000662.
[5]
Pardoe HR, Berg AT, Archer JS, et al. A neurodevelopmental basis for bects: Evidence from structural mri[J]. Epilepsy Res, 2013, 105(1-2): 133-139. DOI: 10.1016/j.eplepsyres.2012.11.008.
[6]
Xing GR, Gao Y, Li XH, et al. The study of diffusion kurtosis imaging in the bect children[J]. Journal of Inner Monglia Medical University, 2019, 41(3): 225-227, 231. DOI: 10.16343/j.cnki.issn.2095-512x.2019.03.001.
[8]
Jiang S, Luo C, Huang Y, et al. Altered static and dynamic spontaneous neural activity in drug-naïve and drug-receiving benign childhood epilepsy with centrotemporal spikes[J]. Front Hum Neurosci, 2020, 14: 361. DOI: 10.3389/fnhum.2020.00361.
[9]
Fan L, Li H, Zhuo J, et al. The human brainnetome atlas: A new brain atlas based on connectional architecture[J]. Cereb Cortex, 2016, 26(8): 3508-3526. DOI: 10.1093/cercor/bhw157.
[10]
Baracchini G, Mišić B, Setton R, et al. Inter-regional bold signal variability is an organizational feature of functional brain networks[J]. Neuroimage, 2021, 237: 118149. DOI: 10.1016/j.neuroimage.2021.118149.
[11]
Lundberg S, Weis J, Eeg-Olofsson O, et al. Hippocampal region asymmetry assessed by 1h-mrs in rolandic epilepsy[J]. Epilepsia, 2003, 44(2): 205-210. DOI: 10.1046/j.1528-1157.2003.26802.x.
[12]
Bajic D, Kumlien E, Mattsson P, et al. Incomplete hippocampal inversion-is there a relation to epilepsy?[J]. Eur Radiol, 2009, 19(10): 2544-2550. DOI: 10.1007/s00330-009-1438-y.
[13]
Li Z, Zhang J, Wang F, et al. Surface-based morphometry study of the brain in benign childhood epilepsy with centrotemporal spikes[J]. Ann Transl Med, 2020, 8(18): 1150. DOI: 10.21037/atm-20-5845.
[14]
Teixeira JM, Santos ME, Oom P. Oral language in children with benign childhood epilepsy with centrotemporal spikes[J]. Epilepsy Behav, 2020, 111: 107328. DOI: 10.1016/j.yebeh.2020.107328.
[15]
Huang CC, Rolls ET, Hsu CH, et al. Extensive cortical connectivity of the human hippocampal memory system: Beyond the "what" and "where" dual stream model[J]. Cereb Cortex, 2021, 31(10): 4652-4669. DOI: 10.1093/cercor/bhab113.
[16]
Verrotti A, Filippini M, Matricardi S, et al. Memory impairment and benign epilepsy with centrotemporal spike (bects): A growing suspicion[J]. Brain Cogn, 2014, 84(1): 123-131. DOI: 10.1016/j.bandc.2013.11.014.
[17]
Fritch HA, Spets DS, Slotnick SD. Functional connectivity with the anterior and posterior hippocampus during spatial memory[J]. Hippocampus, 2021, 31(7): 658-668. DOI: 10.1002/hipo.23283.
[18]
Avigan PD, Cammack K, Shapiro ML. Flexible spatial learning requires both the dorsal and ventral hippocampus and their functional interactions with the prefrontal cortex[J]. Hippocampus, 2020, 30(7): 733-744. DOI: 10.1002/hipo.23198.
[19]
Bourel-Ponchel E, Mahmoudzadeh M, Adebimpe A, et al. Functional and structural network disorganizations in typical epilepsy with centro-temporal spikes and impact on cognitive neurodevelopment[J]. Front Neurol, 2019, 10: 809. DOI: 10.3389/fneur.2019.00809.
[20]
Lengler U, Kafadar I, Neubauer BA, et al. Fmri correlates of interictal epileptic activity in patients with idiopathic benign focal epilepsy of childhood. A simultaneous eeg-functional mri study[J]. Epilepsy Res, 2007, 75(1): 29-38. DOI: 10.1016/j.eplepsyres.2007.03.016.
[21]
Archer JS, Briellman RS, Abbott DF, et al. Benign epilepsy with centro-temporal spikes: Spike triggered fmri shows somato-sensory cortex activity[J]. Epilepsia, 2003, 44(2): 200-204. DOI: 10.1046/j.1528-1157.2003.02502.x.
[22]
Sestieri C, Shulman GL, Corbetta M. The contribution of the human posterior parietal cortex to episodic memory[J]. Nat Rev Neurosci, 2017, 18(3): 183-192. DOI: 10.1038/nrn.2017.6.

PREV Quantitative comparative study of Dixon-MRI and BOLD-MRI on early renal injury in adult male with metabolic syndrome
NEXT A study on the microstructure of hippocampus in Alzheimer,s disease and amnestic mild cognitive impairment based on NODDI
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn