Share:
Share this content in WeChat
X
Clinical Article
Application of MR myocardial strain technique in the diagnosis and differential diagnosis of hypertrophic cardiomyopathy
YANG Xinyao  WU Jiang  ZHU Lina  HAO Xiaoyong  LI Xuan  NIU Heng 

Cite this article as: Yang XY, Wu J, Zhu LN, et al. Application of MR myocardial strain technique in the diagnosis and differential diagnosis of hypertrophic cardiomyopathy[J]. Chin J Magn Reson Imaging, 2022, 13(2): 10-15, 21. DOI:10.12015/issn.1674-8034.2022.02.003.


[Abstract] Objective To apply cardiac magnetic resonance tissue tracking technology (CMR-TT) to quantitatively evaluate myocardial function in patients with hypertrophic cardiomyopathy (HCM) and myocardial function in patients with left ventricular hypertrophy caused by cardiac amyloidosis (CA), and to analyze the differences in myocardial strain changes.Materials and Methods Select 30 patients with hypertrophic cardiomyopathy (HCM group), 15 patients with myocardial amyloidosis (CA group), and 30 normal people as normal controls (NC group), using CMR-TT technology and CVI42 post-processing software measure conventional strain parameters such as longitudinal strain (LS), circumferential strain (CS), radial strain (RS) of the whole myocardium and segments (basal, middle, apical) and relative apical sparing of strain (RAS), and quantitatively assess the overall and local movement of the myocardium.Results The values of the strain parameters among the NC group, HCM group, and CA group decreased successively, and all three groups were statistically significant (P<0.05); in the pairwise comparison, apical circumferential strain (ACS) was not statistically significant except for the NC group and the HCM group, the rest were statistically significant (P<0.05); RASRS, RASCS, and RASLS were all statistically significant (P<0.05). The area under the ROC curve of global radial strain (GRS), global circumferential strain (GCS), global longitudinal strain (GLS), basal radial strain (BRS), basal circumferential strain (BCS), basal longitudinal strain (BLS) in the HCM group and NC group were 0.77, 0.71, 0.77, 0.90, 0.73, 0.78, respectively (P<0.05), and the area under the curve of BRS was significantly higher than other parameters. The area under the ROC curve of RASRS, RASCS and RASLS of HCM group and CA group were 0.83, 0.75, 0.71 respectively (P<0.05), which has certain value for the differential diagnosis of HCM and CA.Conclusions CMR-TT can be used to evaluate the overall and local functional movement of the heart. HCM myocardial strain is reduced, HCM basal segment strain is significantly reduced, and BRS has greater diagnostic value; CA patients' myocardial strain decreases more than HCM patients for obvious reasons, the relative apical retention mode provides a certain reference value for the differential diagnosis of the two, and the relative apical RS has the best diagnostic efficiency.
[Keywords] cardiac magnetic resonance;myocardial strain;hypertrophic cardiomyopathy;diagnosis;differential diagnosis

YANG Xinyao1   WU Jiang2*   ZHU Lina2   HAO Xiaoyong2   LI Xuan2   NIU Heng2  

1 School of Medical Imaging, Shanxi Medical University, Taiyuan 030001, China

2 Department of Magnetic Resonance, Cardiovascular Hospital of Shanxi Province, Taiyuan 030024, China

Wu J, E-mail: wujiang1024@sina.com

Conflicts of interest   None.

Received  2021-08-01
Accepted  2022-02-07
DOI: 10.12015/issn.1674-8034.2022.02.003
Cite this article as: Yang XY, Wu J, Zhu LN, et al. Application of MR myocardial strain technique in the diagnosis and differential diagnosis of hypertrophic cardiomyopathy[J]. Chin J Magn Reson Imaging, 2022, 13(2): 10-15, 21.DOI:10.12015/issn.1674-8034.2022.02.003

[1]
Marian AJ, Braunwald E. Hypertrophic cardiomyopathy: Genetics, pathogenesis, clinical manifestations, diagnosis, and therapy[J]. Circ Res, 2017, 121(7): 749-770. DOI: 10.1161/CIRCRESAHA.117.311059.
[2]
Liu MH, Xu LJ. Interpretation of Diagnosis and Treatment of Cardiac Amyloidosis. A Position Statement of the ESC Working Group on Myocardial and Pericardial Diseases[J]. Molecular Cardiology of China, 2021, 21(2): 3793-3795. DOI: 10.16563/j.cnki.1671-6272.2021.04.001.
[3]
Satriano A, Heydari B, Guron N, et al. 3-Dimensional regional and global strain abnormalities in hypertrophic cardiomyopathy[J]. Int J Cardiovasc Imaging, 2019, 35(10): 1913-1924. DOI: 10.1007/s10554-019-01631-8.
[4]
Li JC, Cheng LQ, Chen YD, et al. Magnetic resonance imaging measurement and clinical application of myocardial strain[J]. Chin J Med Imag, 2017, 25(4): 307-309, 313. DOI: 10.3969/j.issn.1005-5185.2017.04.017.
[5]
Ommen SR, Mital S, Burke MA, et al. 2020 AHA/ACC Guideline for the Diagnosis and Treatment of Patients With Hypertrophic Cardiomyopathy: Executive Summary: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines[J]. Circulation, 2020, 142(25): e533-e557. DOI: 10.1161/CIR.0000000000000938.
[6]
Garcia-Pavia P, Rapezzi C, Adler Y, et al. Diagnosis and treatment of cardiac amyloidosis: a position statement of the ESC Working Group on Myocardial and Pericardial Diseases[J]. Eur Heart J, 2021, 42(16): 1554-1568. DOI: 10.1093/eurheartj/ehab072.
[7]
Vigneault DM, Yang E, Jensen PJ, et al. Left ventricular strain is abnormal in preclinical and overt hypertrophic cardiomyopathy: Cardiac MR feature tracking[J]. Radiology, 2019, 290(3): 640-648. DOI: 10.1148/radiol.2018180339.
[8]
Baudry G, Mansencal N, Reynaud A, et al. Global and regional echocardiographic strain to assess the early phase of hypertrophic cardiomyopathy due to sarcomeric mutations[J]. Eur Heart J Cardiovasc Imaging, 2020, 21(3): 291-298. DOI: 10.1093/ehjci/jez084.
[9]
Phelan D, Collier P, Thavendiranathan P, et al. Relative apical sparing of longitudinal strain using two-dimensional speckle-tracking echocardiography is both sensitive and specific for the diagnosis of cardiac amyloidosis[J]. Heart, 2012, 98(19): 1442-1448. DOI: 10.1136/heartjnl-2012-302353.
[10]
Klues HG, Schiffers A, Maron BJ. Phenotypic spectrum and patterns of left ventricular hypertrophy in hypertrophic cardiomyopathy: morphologic observations and significance as assessed by two-dimensional echocardiography in 600 patients[J]. J Am Coll Cardiol, 1995, 26(7): 1699-1708. DOI: 10.1016/0735-1097(95)00390-8.
[11]
Smiseth OA, Torp H, Opdahl A, et al. Myocardial strain imaging: how useful is it in clinical decision making?[J]. Eur Heart J, 2016, 37(15): 1196-1207. DOI: 10.1093/eurheartj/ehv529.
[12]
Noureldin RA, Liu S, Nacif MS, et al. The diagnosis of hypertrophic cardiomyopathy by cardiovascular magnetic resonance[J]. J Cardiovasc Magn Reson, 2012, 14(1): 17. DOI: 10.1186/1532-429X-14-17.
[13]
Galli E, Vitel E, Schnell F, et al. Myocardial constructive work is impaired in hypertrophic cardiomyopathy and predicts left ventricular fibrosis[J]. Echocardiography, 2019, 36(1): 74-82. DOI: 10.1111/echo.14210.
[14]
Zhang J, Zhan Y, Ren WD, et al. Speckle Tracking Imaging in Assessing Left Ventricular Endocardial and Epicardial Myocardial Strain of Cardiac Amyloidosis and Hypertrophic Cardiomyopathy[J]. Chin J Med Imag, 2014, 22(1): 36-40, 44. DOI: 10.3969/j.issn.1005-5185.2014.01.011.
[15]
Yu SS, Yu YH, Tang XP, et al. Cardiac MR feature tracking in detection of left ventricular myocardial strain in hypertrophic cardiomyopathy[J]. Chin J Med Imaging Technol, 2017, 33(8): 1129-1133. DOI: 10.13929/j.1003-3289.201703062.
[16]
Hamada S, Schroeder J, Hoffmann R, et al. Prediction of Outcomes in Patients with Chronic Ischemic Cardiomyopathy by Layer-Specific Strain Echocardiography: A Proof of Concept[J]. J Am Soc Echocardiogr, 2016, 29(5): 412-420. DOI: 10.1016/j.echo.2016.02.001.
[17]
Burrage MK, Ferreira VM. Cardiovascular Magnetic Resonance for the Differentiation of Left Ventricular Hypertrophy[J]. Curr Heart Fail Rep, 2020, 17(5): 192-204. DOI: 10.1007/s11897-020-00481-z.
[18]
Tanaka H. Efficacy of echocardiography for differential diagnosis of left ventricular hypertrophy: special focus on speckle-tracking longitudinal strain[J]. J Echocardiogr, 2021, 19(2): 71-79. DOI: 10.1007/s12574-020-00508-3.
[19]
She JQ, Guo JJ, Yu YF, et al. Left Ventricular Outflow Tract Obstruction in Hypertrophic Cardiomyopathy: The Utility of Myocardial Strain Based on Cardiac MR Tissue Tracking[J]. J Magn Reson Imaging, 2021, 53(1): 51-60. DOI: 10.1002/jmri.27307.
[20]
Chacko L, Martone R, Cappelli F, et al. Cardiac amyloidosis: Updates in imaging[J]. Curr Cardiol Rep, 2019, 21(9): 108. DOI: 10.1007/s11886-019-1180-2.
[21]
Fan ZZ, Wang J, Yang F, et al. The Application of three-dimensional speckle tracking Imaging in differential diagnosis for cardiac amyloidosis, hypertrophic cardiomyopathy and hypertensive heart disease[J]. Chin J Ultrasound Med, 2019, 35(7): 604-607. DOI: 10.3969/j.issn.1002-0101.2019.07.010.
[22]
Gotschy A, von Deuster C, van Gorkum RJH, et al. Characterizing cardiac involvement in amyloidosis using cardiovascular magnetic resonance diffusion tensor imaging[J]. J Cardiovasc Magn Reson, 2019, 21(1): 56. DOI: 10.1186/s12968-019-0563-2.
[23]
Giusca S, Steen H, Montenbruck M, et al. Multi-parametric assessment of left ventricular hypertrophy using late gadolinium enhancement, T1 mapping and strain-encoded cardiovascular magnetic resonance[J]. J Cardiovasc Magn Reson, 2021, 23(1): 92. DOI: 10.1186/s12968-021-00775-8.
[24]
Guo YY, Tan LH, Jiang MC, et al. Evaluation of myocardial strain differences of cardiac amyloidosis and other left ventricular hypertrophy diseases with cardiovascular magnetic resonance tissue tracking technique[J]. Chin J Med Imaging Technol, 2020, 36(3): 382-386. DOI: 10.13929/j.issn.1003-3289.2020.03.015.
[25]
Jung HN, Kim SM, Lee JH, et al. Comparison of tissue tracking assessment by cardiovascular magnetic resonance for cardiac amyloidosis and hypertrophic cardiomyopathy[J]. Acta Radiol, 2020, 61(7): 885-893. DOI: 10.1177/0284185119883714.
[26]
Baccouche H, Maunz M, Beck T, et al. Differentiating cardiac amyloidosis and hypertrophic cardiomyopathy by use of three-dimensional speckle tracking echocardiography[J]. Echocardiography, 2012, 29(6): 668-677. DOI: 10.1111/j.1540-8175.2012.01680.x.

PREV Preoperatively predict pathological grading of meningiomas using radiomics model based on transverse and sagittal enhanced T1WI images: a preliminary study
NEXT Quantitative comparative study of Dixon-MRI and BOLD-MRI on early renal injury in adult male with metabolic syndrome
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn