Share this content in WeChat
The basic principle of intravoxel incoherent motion imaging and its application progress in Sjogren's syndrome
LIU Kuihuan  DING Changwei 

Cite this article as: Liu KH, Ding CW. The basic principle of intravoxel incoherent motion imaging and its application progress in Sjogren's syndrome[J]. Chin J Magn Reson Imaging, 2022, 13(1): 161-163. DOI:10.12015/issn.1674-8034.2022.01.038.

[Abstract] Sjogren's syndrome (SS) is a systemic autoimmune disease, and imaging examinations of the salivary glands play an important role in its diagnosis. Intravoxel incoherent motion (IVIM) imaging is a kind of multi-b diffusion weighted imaging, which can reflect and quantify the diffusion of pure water molecules and perfusion-related diffusion in the tissue at the molecular level, and then reflect the pathological and functional status. The author reviewed the basic principle and current application progress of IVIM technology in SS.
[Keywords] Sjogren's syndrome;magnetic resonance imaging;intravoxel incoherent motion imaging;parotid gland

LIU Kuihuan1, 2   DING Changwei1*  

1 Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, China

2 Department of Radiology, Liaohe Oilfield Gem Flower Hospital, Panjin 124010, China

Ding CW, E-mail:

Conflicts of interest   None.

Received  2021-07-27
Accepted  2021-12-06
DOI: 10.12015/issn.1674-8034.2022.01.038
Cite this article as: Liu KH, Ding CW. The basic principle of intravoxel incoherent motion imaging and its application progress in Sjogren's syndrome[J]. Chin J Magn Reson Imaging, 2022, 13(1): 161-163.DOI:10.12015/issn.1674-8034.2022.01.038

Sumida T, Azuma N, Moriyama M, et al. Clinical practice guideline for Sjögren′s syndrome 2017[J]. Mod Rheumatol, 2018, 28(3): 383-408. DOI: 10.1080/14397595.2018.1438093.
Rheumatology branch of Chinese Medical Association. Guidelines for the diagnosis and treatment of Sjogren's syndrome[J]. Chin J Rheumatol, 2010, 14 (11): 766-768. DOI: 10.3760/cma.j.issn.1007-7480.2010.11.011.
Izumi M, Eguchi K, Nakamura H, et al. Premature fat deposition in the salivary glands associated with Sjogren syndrome: MR and CT evidence[J]. AJNR Am J Neuroradiol, 1997, 18(5): 951-958. DOI: 0195-6108/97/1805-0951.
Thoeny HC, De Keyzer F, Claus FG, et a1. Gustatory stimulation changes the apparent diffusion coefficient of salivary glands: initial experience[J]. Radiology, 2005, 235(2): 629-634. DOI: 10.1148/radiol.2352040127.
Zhang R, Bai Y, Wei W, et al. Basic principles of voxel incoherent motion imaging and diffusion kurtosis imaging and their applications in central nervous system diseases[J]. Chin J Magn Reson Imaging, 2020, 11(9): 804-808. DOI: 10.12015/issn.1674-8034.2020.09.019.
Le Bihan D, Breton E, Lallemand D, et al. MR imaging of introvoxel incoherent motions: application to diffusion and perfusion in neurologic disorder[J]. Radiology, 1986, 161(2): 401-407. DOI: 10.1148/radiology.161.2.3763909.
Feng W, Guo ZZ, Xu YS, et al. Application progresses of intravoxel incoherent motion diffusion weighted imaging in breast cancer[J]. Chin J Med Imaging Technol, 2019, 35(8): 1252-1255. DOI: 1003-3289(2019)08-1252-04.
Ji QS, Ding CW. Research progreses of parotid MRI in Sjogren's Syndrome[J]. Chin J Magn Reson Imaging, 2020, 11(4): 311-314. DOI: 10.12015/issn.1674-8034.2020.04.016.
Bihan DL, Ichikawa S, Motosugi U. Diffusion and intravoxel incoherent motion MR imaging-based virtual elastography: A hypothesis-generating study in the liver[J]. Radiology, 2017, 285(2):170025. DOI: 10.1148/radiol.2017170025.
Federau C. Measuring Perfusion: Intravoxel Incoherent Motion MR Imaging[J]. Magn Reson Imaging Clin N Am, 2021, 29(2): 233-242. DOI: 10.1016/j.mric.2021.01.003.
Luo M, Zhang WD. Technical status of dual exponential model of incoherent motion in voxels[J]. Chin J Magn Reson Imaging, 2017, 8(4): 265-269. DOI: 10.12015/issn.1674-8034.2017.04.006.
Le Bihan D, Breton E, Lallemand D, et al. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging[J]. Radiology, 1988, 168(2): 497-505. DOI: 10.1148/radiology.168.2.3393671.
Le Bihan D. Intravoxel incoherent motion perfusion MR imaging: a wake-up call[J]. Radiology, 2008, 249(3): 748-752. DOI: 10.1148/radiol.2493081301.
Gu LP, He GJ, Ma J. The principle and prospect of intravoxel incoherent motion imaging[J]. Chin J Magn Reson Imaging, 2017, 8(4): 241-242. DOI: 10.12015/issn.1674-8034.2017.04.001.
Cohen AD, Schieke MC, Hohenwalter MD, et al. The effect of low b-values on the intravoxel incoherent motion derived pseudodiffusion parameter in liver[J]. Magnet Reson Med, 2015, 73(1): 306-311. DOI: 10.1002/mrm.25109.
Gurney-Champion OJ, Froeling M, Klaassen R, et al. Minimizing the acquisition time for intravoxel incoherent motion magnetic resonance imaging acquisitions in the liver and pancreas[J]. Invest Radiol, 2016, 51(4): 211-220. DOI: 10.1097/RLI.0000000000000225.
Iima M, Le BD. Clinical intravoxel incoherent motion and diffusion MR imaging: Past, resent, and future[J]. Radiology, 2016, 278(1): 13-32. DOI: 10.1148/radiol.2015150244.
Lee Y, Lee S, Kim N, et al. Intravoxel incoherent motion diffusion-weighted MR imaging of the liver: effect of triggering methods on regional variability and measurement repeatability of quantitative parameters[J]. Radiology, 2015, 274(2): 405-415. DOI: 10.1148/radiol.14140759.
Xu XQ, Su GY, Liu J, et al. Intravoxel incoherent motion MR imaging measurements of the bilateral parotid glands at 3.0-T MR: effect of age, gender and laterality in healthy adults[J]. Br J Radiol, 2015, 88(1056): 20150646. DOI: 10.1259/bjr.20150646.
Le THV, Kwon SM. Vascular endothelial growth factor biology and its potential as a therapeutic target in rheumatic diseases[J]. Int J Mol Sci, 2021, 22(10): 5387. DOI: 10.3390/ijms22105387.
Alunno A, Ibba-Manneschi L, Bistoni O, et al. Mobilization of lymphatic endothelial precursor cells and lymphatic neovascularization in primary Sjögren's syndrome[J]. J Cell Mol Med, 2016, 20(4): 613-622. DOI: 10.1111/jcmm.12793.
Ding CW, Guo QY, Xing XF, et al. MRI features of parotid gland in Sjögren's syndrome[J]. Chin J Radiol, 2014, 48(5): 386-390. DOI: 10.3760/cma.j.issn.1005-1201.2014.05.007.
Ding CW, Xing XF, Guo QY, et al. Diffusion-weighted MRI findings in Sjögren's syndrome: A preliminary study[J]. Acta Radiol, 2016, 57(6): 691-700. DOI: 10.1177/0284185115603245.
Becker AS, Manoliu A, Wurnig MC, et al. Intravoxel incoherent motion imaging measurement of perfusion changes in the parotid gland provoked by gustatory stimulation: A pilot study[J]. J Magn Reson Imaging, 2017, 45(2): 570-578. DOI: 10.1002/jmri.25393.
Zhou N, Chu C, Dou X, et al. Early evaluation of irradiated parotid glands with intravoxel incoherent motion MR imaging: correlation with dynamic contrast-enhanced MR imaging[J]. BMC Cancer, 2016, 16(1): 865. DOI: 10.1186/s12885-016-2900-2.
Shen J, Xu XQ, Su GY, et al. Intravoxel incoherent motion magnetic resonance imaging of the normal-appearing parotid glands in patients with differentiated thyroid cancer after radioiodine therapy[J]. Acta Radiol, 2018, 59(2): 204-211. DOI: 10.1177/0284185117709037.
Marzi S, Farneti A, Vidiri A et al. Radiation-induced parotid changes in oropharyngeal cancer patients: the role of early functional imaging and patient-/treatment-related factors[J]. Radiat Oncol, 2018, 13: 189. DOI: 10.1186/s13014-018-1137-4.
Marzi S, Forina C, Marucci L, et al. Early radiation-induced changes evaluated by intravoxel incoherent motion in the major salivary glands[J]. J Magn Reson Imaging, 2015, 41(4): 974-982. DOI: 10.1002/jmri.24626.
Ma G, Xu XQ, Zhu LN, et al. Intravoxel incoherent motion magnetic resonance imaging for assessing parotid gland tumors: correlation and comparison with arterial spin labeling imaging[J]. Korean J Radiol, 2021, 22(2): 243-252. DOI: 10.3348/kjr.2020.0290.
Sumi M, Van Cauteren M, Sumi T, et al. Salivary gland tumors: use of intravoxel incoherent motion MR imaging for assessment of diffusion and perfusion for the differentiation of benign from malignant tumors[J]. Radiology, 2012, 263(3): 770-777. DOI: 10.1148/radiol.12111248.
Feng QQ, Chu C, Wang ZW, et al. Application of intravoxel incoherent motion MR imaging to diagnose parotid gland abnormalities in Sjogren's syndrome[J]. J Clin Radiol, 2020, 39(6): 1074-1079. DOI: 10.13437/j.cnki.jcr.2020.06.010.
Su GY, Xu XQ, Wang YY, et al. Feasibility study of using intravoxel incoherent motion mri to detect parotid gland abnormalities in early-stage Sjögren syndrome patients[J]. J Magn Reson Imaging, 2016, 43(6): 1455-1461. DOI: 10.1002/jmri.25096.
Chu C, Zhou N, Zhang H, et al. Correlation between intravoxel incoherent motion MR parameters and MR nodular grade of parotid glands in patients with Sjögren's syndrome: A pilot study[J]. Eur J Radiol, 2017, 86: 241-247. DOI: 10.1016/j.ejrad.2016.11.021.
Chu C. Application of using functional magnetic resonance imaging to detect parotid gland abnormalities in early-stage Sjogren's syndrome patients[D]. Nanjing University, 2017.
Razek AAKA, Samir S, Ashmalla GA. Characterization of parotid tumors with dynamic susceptibility contrast perfusion-weighted magnetic resonance imaging and diffusion-weighted MR imaging[J]. J Comput Assist Tomogr, 2017, 41(1): 131-136. DOI: 10.1097/RCT.0000000000000486.
Makula E, Pokorny G, Kiss M, et al. The place of magnetic resonance and ultrasonographic examinations of the parotid gland in the diagnosis and follow-up of primary Sjögren's syndrome[J]. Rheumatology (Oxford). 2000, 39(1): 97-104. DOI: 10.1093/rheumatology/39.1.97.
Sumi M, Takagi Y, Uetani M, et al. Diffusion-weighted echoplanar MR imaging of the salivary glands[J]. AJR Am J Roentgenol. 2002, 178(4): 959-965. DOI: 10.2214/ajr.178.4.1780959.

PREV Research progress of proton magnetic resonance spectroscopy in primary insomnia
NEXT The advances of MRI in the clinical pathway of acute pancreatitis

Tel & Fax: +8610-67113815    E-mail: