Share this content in WeChat
Research progress of proton magnetic resonance spectroscopy in primary insomnia
ZHAO Shuyi  SU Zengfeng 

Cite this article as: Zhao SF, Su ZF. Research progress of proton magnetic resonance spectroscopy in primary insomnia[J]. Chin J Magn Reson Imaging, 2022, 13(1): 157-160. DOI:10.12015/issn.1674-8034.2022.01.037.

[Abstract] Primary insomnia (PI) is one of the most common sleep disorders. Although we have made some progress in the study of the nature, etiology and pathophysiology of insomnia, there is still no universally accepted pathophysiological model. Today, the most widely accepted hypothesis is that PI is a manifestation of an over-arousal state.Proton magnetic resonance spectroscopy (1H-MRS) provides a non-invasive method to measure the levels of various neurotransmitter and metabolites in the brain, emerging the multi-voxel magnetic resonance spectroscopy can even measure the concentration of neurotransmitters and metabolites in specific brain areas, for the primary insomnia of pathophysiology, pathogenesis, diagnosis and treatment of research provides a fresh view. This paper systematically summarized the domestic and foreign research results and development process of different neurotransmitters and metabolites in various brain regions of primary insomnia by means of magnetic resonance spectroscopy, providing a new perspective for further exploration of the pathophysiological mechanism, diagnosis and treatment of primary insomnia.
[Keywords] primary insomnia;proton magnetic resonance spectroscopy;neurotransmitter;review literature

ZHAO Shuyi   SU Zengfeng*  

Department of General Practice, Chaohu Hospital of Anhui Medical University, Chaohu 238000, China

Su ZF, E-mail:

Conflicts of interest   None.

ACKNOWLEDGMENTS Scientific Research Fund Project of Anhui Medical University (No. 2020xkj219, 2021zhyx-C56).
Received  2021-08-23
Accepted  2021-11-10
DOI: 10.12015/issn.1674-8034.2022.01.037
Cite this article as: Zhao SF, Su ZF. Research progress of proton magnetic resonance spectroscopy in primary insomnia[J]. Chin J Magn Reson Imaging, 2022, 13(1): 157-160. DOI:10.12015/issn.1674-8034.2022.01.037.

Sutton EL. Insomnia[J]. Ann Intern Med, 2021, 174(3): ITC33-ITC48. DOI: 10.7326/AITC202103160.
Perrier J, Amato JN, Berthelon C, et al. Primary insomnia patients' performances during simulated car following and urban driving in the afternoon[J]. J Sleep Res, 2019, 28(4): e12847. DOI: 10.1111/jsr.12847.
Giora E, Galbiati A, Marelli S, et al. Impaired visual processing in patients with insomnia disorder revealed by a dissociation in visual search[J]. J Sleep Res, 2017, 26(3): 338-344. DOI: 10.1111/jsr.12487.
Shen J, Shenkar D, An L, et al. Local and Interregional Neurochemical Associations Measured by Magnetic Resonance Spectroscopy for Studying Brain Functions and Psychiatric Disorders[J]. Front Psychiatry, 2020, 11: 802. DOI: 10.3389/fpsyt.2020.00802.
Wang W, Wu X, Su X, et al. Metabolic alterations of the dorsolateral prefrontal cortex in sleep-related hypermotor epilepsy: A proton magnetic resonance spectroscopy study[J]. J Neurosci Res, 2021, 99(10): 2657-2668. DOI: 10.1002/jnr.24866
Weiner MW, Adam WR. Magnetic resonance spectroscopy for evaluation of renal function[J]. Semin Urol, 1985, 3(1): 34-42.
Dellegrottaglie S, Scatteia A, Pascale CE, et al. Evaluation of Cardiac Metabolism by Magnetic Resonance Spectroscopy in Heart Failure[J]. Heart Fail Clin, 2019, 15(3): 421-433. DOI: 10.1016/j.hfc.2019.02.010.
Fardanesh R, Marino MA, Avendano D, et al. Proton MR spectroscopy in the breast: Technical innovations and clinical applications[J]. J Magn Reson Imaging, 2019, 50(4): 1033-1046. DOI: 10.1002/jmri.26700.
Penet MF, Shah T, Wildes F, et al. MRI and MRS of intact perfused cancer cell metabolism, invasion, and stromal cell interactions[J]. NMR Biomed, 2019, 32(10): e4053. DOI: 10.1002/nbm.4053.
Ramadan NM, Deveshwar R, Levine SR. Magnetic resonance and clinical cerebrovascular disease[J]. An update. Stroke, 1989, 20(9): 1279-1283. DOI: 10.1161/01.str.20.9.1279.
Wu Y, Liu M, Zeng S, et al. Abnormal Topology of the Structural Connectome in the Limbic Cortico-Basal-Ganglia Circuit and Default-Mode Network Among Primary Insomnia Patients[J]. Front Neurosci, 2018, 12: 860. DOI: 10.3389/fnins.2018.00860.
Kansagara D, Wilt TJ, Starkey M, et al. Management of Chronic Insomnia Disorder in Adults[J]. Ann Intern Med, 2016, 165(12): 892. DOI: 10.7326/L16-0542.
Sateia MJ, Buysse DJ, Krystal AD, et al. Clinical Practice Guideline for the Pharmacologic Treatment of Chronic Insomnia in Adults: An American Academy of Sleep Medicine Clinical Practice Guideline[J]. J Clin Sleep Med, 2017, 13(2): 307-349. DOI: 10.5664/jcsm.6470.
Honjoh S, Sasai S, Schiereck SS, et al. Regulation of cortical activity and arousal by the matrix cells of the ventromedial thalamic nucleus[J]. Nat Commun, 2018, 9(1): 2100. DOI: 10.1038/s41467-018-04497-x.
Runnova A, Selskii A, Kiselev A, et al. Changes in EEG Alpha Activity during Attention Control in Patients: Association with Sleep Disorders[J]. J Pers Med, 2021, 11(7). DOI: 10.3390/jpm11070601.
Ding S, Gao L, Kukun H, et al. Novel Neuroimaging Biomarker for Sleep Quality in Insomnia Disorder: A Hypothalamus Resting State Study[J]. Front Neurosci, 2021, 15: 634984. DOI: 10.3389/fnins.2021.634984.
Park S, Kang I, Edden RAE, et al. Shorter sleep duration is associated with lower GABA levels in the anterior cingulate cortex[J]. Sleep Med, 2020, 71: 1-7. DOI: 10.1016/j.sleep.2020.02.018.
Gauthier P, Arnaud C, Gandolfo G, et al. Influence of a GABA(B) receptor antagonist on the sleep-waking cycle in the rat[J]. Brain Res, 1997, 773(1-2): 8-14. DOI: 10.1016/s0006-8993(97)00643-4.
Cedernaes J, Waldeck N, Bass J. Neurogenetic basis for circadian regulation of metabolism by the hypothalamus[J]. Genes Dev, 2019, 33(17-18): 1136-1158. DOI: 10.1101/gad.328633.119.
Leerssen J, Wassing R, Ramautar JR, et al. Increased hippocampal-prefrontal functional connectivity in insomnia[J]. Neurobiol Learn Mem, 2019, 160: 144-150. DOI: 10.1016/j.nlm.2018.02.006.
Xie D, Qin H, Dong F, et al. Functional Connectivity Abnormalities of Brain Regions With Structural Deficits in Primary Insomnia Patients[J]. Front Neurosci, 2020, 14: 566. DOI: 10.3389/fnins.2020.00566.
Plante DT, Jensen JE, Schoerning L, et al. Reduced gamma-aminobutyric acid in occipital and anterior cingulate cortices in primary insomnia: a link to major depressive disorder?[J]. Neuropsychopharmacology, 2012, 37(6): 1548-1557. DOI: 10.1038/npp.2012.4.
Smith MT, Perlis ML, Chengazi VU, et al. Neuroimaging of NREM sleep in primary insomnia: a Tc-99-HMPAO single photon emission computed tomography study[J]. Sleep, 2002, 25(3): 325-335.
Falup-Pecurariu C, Diaconu S, Tint D, et al. Neurobiology of sleep (Review)[J]. Exp Ther Med, 2021, 21(3): 272. DOI: 10.3892/etm.2021.9703.
Morgan PT, Pace-Schott EF, Mason GF, et al. Cortical GABA levels in primary insomnia[J]. Sleep, 2012, 35(6): 807-814. DOI: 10.5665/sleep.1880.
Luppi PH, Peyron C, Fort P. Not a single but multiple populations of GABAergic neurons control sleep[J]. Sleep Med Rev, 2017, 32: 85-94. DOI: 10.1016/j.smrv.2016.03.002.
Jones BE. Arousal and sleep circuits[J]. Neuropsychopharmacology, 2020, 45(1): 6-20. DOI: 10.1038/s41386-019-0444-2.
Fischer DB, Boes AD, Demertzi A, et al. A human brain network derived from coma-causing brainstem lesions[J]. Neurology, 2016, 87(23): 2427-2434. DOI: 10.1212/WNL.0000000000003404.
Plante DT, Jensen JE, Winkelman JW. The role of GABA in primary insomnia[J]. Sleep, 2012, 35(6): 741-742. DOI: 10.5665/sleep.1854.
Evans CJ, Mcgonigle DJ, Edden RA. Diurnal stability of gamma-aminobutyric acid concentration in visual and sensorimotor cortex[J]. J Magn Reson Imaging, 2010, 31(1): 204-209. DOI: 10.1002/jmri.21996.
Spiegelhalder K, Regen W, Nissen C, et al. Magnetic Resonance Spectroscopy in Patients with Insomnia: A Repeated Measurement Study[J]. PLoS One, 2016, 11(6): e0156771. DOI: 10.1371/journal.pone.0156771.
Fietze I, Laharnar N, Koellner V, et al. The Different Faces of Insomnia[J]. Front Psychiatry, 2021, 12: 683943. DOI: 10.3389/fpsyt.2021.683943.
Sakai K. What single-unit recording studies tell us about the basic mechanisms of sleep and wakefulness[J]. Eur J Neurosci, 2020, 52(6): 3507-3530. DOI: 10.1111/ejn.14485.
Button K S, Ioannidis JP, Mokrysz C, et al. Power failure: why small sample size undermines the reliability of neuroscience[J]. Nat Rev Neurosci, 2013, 14(5): 365-76. DOI: 10.1038/nrn3475.
Gu M, Hurd R, Noeske R, et al. GABA editing with macromolecule suppression using an improved MEGA-SPECIAL sequence[J]. Magn Reson Med, 2018, 79(1): 41-7. DOI: 10.1002/mrm.26691.
Goryawala MZ, Sheriff S, Maudsley AA. Regional distributions of brain glutamate and glutamine in normal subjects[J]. NMR Biomed, 2016, 29(8): 1108-1116. DOI: 10.1002/nbm.3575.
Rothman DL, Sibson NR, Hyder F, et al. In vivo nuclear magnetic resonance spectroscopy studies of the relationship between the glutamate-glutamine neurotransmitter cycle and functional neuroenergetics[J]. Philos Trans R Soc Lond B Biol Sci, 1999, 354(1387): 1165-77. DOI: 10.1098/rstb.1999.0472.
Schiel JE, Holub F, Petri R, et al. Affect and Arousal in Insomnia: Through a Lens of Neuroimaging Studies[J]. Curr Psychiatry Rep, 2020, 22(9): 44. DOI: 10.1007/s11920-020-01173-0.
Liu H, Shi H, Pan P. Brain structural and functional alterations in insomnia disorder: More "homogeneous" research is needed[J]. Sleep Med Rev, 2018, 42: 234-5. DOI: 10.1016/j.smrv.2018.08.005.
Nakada T. Conversion of brain cytosol profile from fetal to adult type during the perinatal period: taurine-NAA exchange[J]. Proc Jpn Acad Ser B Phys Biol Sci, 2010, 86(6): 630-42. DOI: 10.2183/pjab.86.630.
Robinson-Shelton A, Malow BA. Sleep Disturbances in Neurodevelopmental Disorders[J]. Curr Psychiatry Rep, 2016, 18(1): 6. DOI: 10.1007/s11920-015-0638-1.
Luppi P H, Fort P. Sleep-wake physiology[J]. Handb Clin Neurol, 2019, 160: 359-70. DOI: 10.1016/B978-0-444-64032-1.00023-0.
Peng B. A Magnetic Resonance Spectrum Imaging Study in Frontal Lobe andHippocampus of Paticnts with Primary Insomnia[D]. Jinan Universit, 2013.
Koenigs M, Holliday J, Solomon J, et al. Left dorsomedial frontal brain damage is associated with insomnia[J]. J Neurosci, 2010, 30(47): 16041-16043. DOI: 10.1523/JNEUROSCI.3745-10.2010.
Tarun A, Wainstein-Andriano D, Sterpenich V, et al. NREM sleep stages specifically alter dynamical integration of large-scale brain networks[J]. iScience, 2021, 24(1): 101923. DOI: 10.1016/j.isci.2020.101923.
Huang QT, Shi CZ, Sun Y, et al. A magnetic resonance spectroscopy study on cerebellar nuclei in patients with insomnia disorder[J]. Chin J Nerv Ment Dis, 2018, 44(3):155-160. DOI: 10.3969/j.issn.1002-0152.2018.03.006.
Stovell MG, Yan JL, Sleigh A, et al. Assessing Metabolism and Injury in Acute Human Traumatic Brain Injury with Magnetic Resonance Spectroscopy: Current and Future Applications[J]. Front Neurol, 2017, 8: 426. DOI: 10.3389/fneur.2017.00426.
Younis S, Hougaard A, Christensen CE, et al. Feasibility of Glutamate and GABA Detection in Pons and Thalamus at 3T and 7T by Proton Magnetic Resonance Spectroscopy[J]. Front Neurosci, 2020, 14: 559314. DOI: 10.3389/fnins.2020.559314.

PREV Study progress of magnetic resonance imaging in age-related macular degeneration
NEXT The basic principle of intravoxel incoherent motion imaging and its application progress in Sjogren,s syndrome

Tel & Fax: +8610-67113815    E-mail: