Share:
Share this content in WeChat
X
Review
Research progress of white matter microstructure analysis methods based on diffusion tensor imaging in visual pathway injury
WANG Haoyu  WANG Peng  XIANG Shutian 

Cite this article as: Wang HY, Wang P, Xiang ST. Research progress of white matter microstructure analysis methods based on diffusion tensor imaging in visual pathway injury[J]. Chin J Magn Reson Imaging, 2022, 13(1): 147-150. DOI:10.12015/issn.1674-8034.2022.01.034.


[Abstract] The visual pathway includes optic nerve, optic chiasma, optic tract, optic radiation and visual cortex. Conventional MRI can't detect the change of microstructure, and the ophthalmology examination also has certain subjectivity and limitations that can't detect the changes of posterior visual pathway. As an emerging technology, diffusion tensor imaging (DTI) can provide microstructure information and visually display white matter fiber bundles in vivo through various post-processing analysis methods combined with different parameters. It plays an important role in non-invasive exploration of neuropathological mechanisms of diseases and prognosis assessment. Recently, with the innovation of post-processing analysis methods, DTI is more and more widely used in visual pathway injury. This review introduces analysis methods of white matter fiber bundle microstructure based on DTI and its application in visual pathway injury.
[Keywords] diffusion tensor imaging;white matter;visual pathway injury;voxel-based analysis;fiber tracking;tract-based spatial statistics;Fixel-based analysis

WANG Haoyu   WANG Peng   XIANG Shutian*  

Department of Radiology, Affiliated Hospital of Yunnan University (Second People's Hospital of Yunnan Province, Eye Hospital of Yunnan Province), Kunming 650000

Xiang ST, E-mail: xiangshutian@sina.com

Conflicts of interest   None.

ACKNOWLEDGMENTS Association Foundation Program of Yunnan Provincial Science and Technology Department and Kunming Medical University (No. 202001AY070001-088); Graduate Innovation Fund of Kunming Medical University (No. 2021S285).
Received  2021-09-23
Accepted  2021-12-21
DOI: 10.12015/issn.1674-8034.2022.01.034
Cite this article as: Wang HY, Wang P, Xiang ST. Research progress of white matter microstructure analysis methods based on diffusion tensor imaging in visual pathway injury[J]. Chin J Magn Reson Imaging, 2022, 13(1): 147-150. DOI:10.12015/issn.1674-8034.2022.01.034.

[1]
Solli E, Turbin RE. Primary and Secondary Optic Nerve Sheath Meningioma[J]. J Neurol Surg B, 2021, 82(1): 27-71. DOI: 10.1055/s-0041-1723801.
[2]
Liu N, Zhao, JH, Zhang L, et al. Changes of visual field defect in patients with acute solitary occipital lobe cerebral infarction before and after treatment[J]. Chin J Ocul Fundus Dis, 2020, 36(4):275-279. DOI: 10.3760/cma.j.cn511434-20200110-00011.
[3]
Basser P, Mattiello J, Lebihan D. MR diffusion tensor spectroscopy and imaging[J]. Biophysical Journal, 1994, 66(1): 259-267. DOI: 10.1016/S0006-3495(94)80775-1.
[4]
Raffelt D, Tournier J, Rose S, et al. Apparent Fibre Density: a novel measure for the analysis of diffusion-weighted magnetic resonance images[J]. NeuroImage, 2012, 59(4): 3976-3794. DOI: 10.1016/j.neuroimage.2011.10.045.
[5]
Raffelt D, Tournier J, Smith R, et al. Investigating white matter fibre density and morphology using fixel-based analysis[J]. Neuroimage, 2017, 144: 58-73. DOI: 10.1016/j.neuroimage.2016.09.029.
[6]
Chen Y, Wu MX, Chen WJ, et al. Study of diffuse tensor imaging in patients with PSD based on TBSS technique[J]. Chin J Magn Reson Imaging, 2018, 9(4): 253-257. DOI: 10.12015/issn.1674-8034.2018.04.003.
[7]
Zhang XH, Li YM, Zeng C, et al. Study of the Relationship between Optic Radiation and Visual Impairment[J]. Chin Comput Med Imag, 2017, 23(6): 499-503. DOI: 10.3969/j.issn.1006-5741.2017.06.002.
[8]
Tian Q, Shi DP, Guo HL, et al. Study of magnetic resonance diffusion tensor imaging in diabetic optic neuropathy[J]. Chin J Magn Reson Imaging, 2012, 3(1):12-14. DOI: 10.3969/j.issn.1674-8034.2012.01.004.
[9]
Zhang Y, Guo X, Wang M, et al. Reduced Field-of-View Diffusion Tensor Imaging of the Optic Nerve in Retinitis Pigmentosa at 3T[J]. AJNR Am J Neuroradiol, 2016, 37(8): 1510-1515. DOI: 10.3174/ajnr.A4767.
[10]
Tan Z, Huang R, Guo Q, et al. Preliminary study of visual pathway in ocular hypertension patients using magnetic resonance diffusion tensor and 3D-OCT[J]. International Eye Science, 2020, 20(8): 1443-1447. DOI: 10.3980/j.issn.1672-5123.2020.8.32.
[11]
Wu YH, Wang XL. Comparison of optic radiation between anisometropic and strabismic amblyo-piabased on diffusion tensor imaging[J]. Recent Advances in Ophthalmology, 2021, 41(4):346-349. DOI: 10.13389/j.cnki.rao.2021.0072.
[12]
Feng T, Zhao SJ, Nie BB, et al. Research progress in fiber tracking algorithms for diffusion magnetic resonance imaging[J]. Chin J Med Imag, 2019, 27(5): 393-396, 400. DOI: 10.3969/j.issn.1005-5185.2019.05.018.
[13]
O'Donnell LJ, Golby AJ, Westin CF, et al. Fiber clustering versus the parcellation-based connectome[J]. Neuroimage, 2013, 80: 283-289. DOI: 10.1016/j.neuroimage.2013.04.066.
[14]
Jang SH, Chang CH, Jung YJ, et al. Optic radiation injury in patients with aneurismal subarachnoid hemorrhage: A preliminary diffusion tensor imaging report[J]. Neural Regen Res, 2018, 13(3): 563-566. DOI: 10.4103/1673-5374.228763.
[15]
Wu C, Duan S, Mu X, et al. Assessment of optic nerve and optic tract alterations in patients with orbital space-occupying lesions using probabilistic diffusion tractography[J]. Int J Ophthalmol, 2019, 12(8): 1304-1310. DOI: 10.18240/ijo.2019.08.11.
[16]
Takemura H, Ogawa S, Mezer A, et al. Diffusivity and quantitative T1 profile of human visual white matter tracts after retinal ganglion cell damage[J]. Neuroimage Clin, 2019, 23: 101826. DOI: 10.1016/j.nicl.2019.101826.
[17]
Rutland J, Padormo F, Yim C, et al. Quantitative assessment of secondary white matter injury in the visual pathway by pituitary adenomas: a multimodal study at 7-Tesla MRI[J]. J Neurosurg, 2019, 132(2): 333-342. DOI: 10.3171/2018.9.JNS182022.
[18]
Miller N, Liu Y, Krivochenitser R, et al. Linking neural and clinical measures of glaucoma with diffusion magnetic resonance imaging (dMRI)[J]. PLoS One, 2019, 14(5): e0217011. DOI: 10.1371/journal.pone.0217011.
[19]
Li Q, Jiang Q, Guo M, et al. Grey and white matter changes in children with monocular amblyopia: voxel-based morphometry and diffusion tensor imaging study[J]. Br J Ophthalmol, 2013, 97(4): 524-529. DOI: 10.1136/bjophthalmol-2012-302218.
[20]
Dai H, Yin D, Hu C, et al. Whole-brain voxel-based analysis of diffusion tensor MRI parameters in patients with primary open angle glaucoma and correlation with clinical glaucoma stage[J]. Neuroradiology, 2013, 55(2): 233-43. DOI: 10.1007/s00234-012-1122-9.
[21]
Smith S, Jenkinson M, Johansen-Berg H, et al. Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data[J]. Neuroimage, 2006, 31(4): 1487-505. DOI: 10.1016/j.neuroimage.2006.02.024
[22]
Bach M, Laun F, Leemans A, et al. Methodological considerations on tract-based spatial statistics (TBSS)[J]. NeuroImage, 2014, 100: 358-69. DOI: 10.1016/j.neuroimage.2014.06.021.
[23]
Smith S, Jenkinson M, Johansen-Berg H, et al. Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data[J]. NeuroImage, 2006, 31(4): 1487-505. DOI: 10.1016/j.neuroimage.2006.02.024.
[24]
Zikou A, Kitsos G, Astrakas L, et al. Pseudoexfoliation syndrome without glaucoma: White matter abnormalities detected by conventional MRI and diffusion tensor imaging[J]. Eur J Radiol, 2018, 99: 82-87. DOI: 10.1016/j.ejrad.2017.12.019.
[25]
Bridge H, Coullon G, Morjaria R, et al. The Effect of Congenital and Acquired Bilateral Anophthalmia on Brain Structure[J]. Neuroophthalmology, 2021, 45(2): 75-86. DOI: 10.1080/01658107.2020.1856143.
[26]
Wu Q, Hu H, Chen W, et al. Morphological and microstructural brain changes in thyroid-associated ophthalmopathy: a combined voxel-based morphometry and diffusion tensor imaging study[J]. J Endocrinol Invest, 2020, 43(11): 1591-1598. DOI: 10.1007/s40618-020-01242-4.
[27]
Li Q, Zhai LY, Jiang QY, et al. Tract-based spatial statistics analysis of white matter changes in children with anisometropic amblyopia[J]. Neurosci Lett, 2015, 597: 7-12. DOI: 10.1016/j.neulet.2015.04.027.
[28]
Raffelt D, Smith R, Ridgway G, et al. Connectivity-based fixel enhancement: Whole-brain statistical analysis of diffusion MRI measures in the presence of crossing fibres[J]. NeuroImage, 2015, 117: 40-55. DOI: 10.1016/j.neuroimage.2015.05.039.
[29]
Jeurissen B, Leemans A, Tournier J, et al. Investigating the prevalence of complex fiber configurations in white matter tissue with diffusion magnetic resonance imaging[J]. Hum Brain Mapp, 2013, 34(11): 2747-2766. DOI: 10.1002/hbm.22099.
[30]
Haykal S, Jansonius NM, Cornelissen FW. Investigating changes in axonal density and morphology of glaucomatous optic nerves using fixel-based analysis[J]. Eur J Radiol, 2020, 133:109356. DOI: 10.1016/j.ejrad.2020.109356.
[31]
Haykal S, Curcic-Blake B, Jansonius NM, et al. Fixel-Based Analysis of Visual Pathway White Matter in Primary Open-Angle Glaucoma[J]. Invest Ophthalmol Vis Sci, 2019, 60(12): 3803-3812. DOI: 10.1167/iovs.19-27447.
[32]
Haykal S, Jansonius N, Cornelissen F. Progression of Visual Pathway Degeneration in Primary Open-Angle Glaucoma: A Longitudinal Study[J]. Front Hum Neurosci, 2021, 15: 630898. DOI: 10.3389/fnhum.2021.630898.
[33]
Liu XY, Zou Y, Jiang T, et al. Changes in topological properties of brain structural network in patients with neuromyelitis optica spectrum disorder based on diffusion tensor imaging[J]. Chin J Neuromed, 2018, 17(5): 475-479. DOI: 10.3760/cma.i.issn.1671-8925.2018.05.008.
[34]
Li D, Zhou FQ, Liu HP, et al. The topological properties of brain structural network based on diffusion tensor imaging in primary angle-closure glaucoma patients: a graph theoretical analysis[J]. Chin J Radiol, 2018, 52(7): 489-494. DOI: 10.3760/cma.j.issn.1005-1201.2018.07.001.
[35]
Di Ciò F, Garaci F, Minosse S, et al. Reorganization of the structural connectome in primary open angle Glaucoma[J]. Neuroimage Clin, 2020, 28: 102419. DOI: 10.1016/j.nicl.2020.102419.

PREV Application of magnetic resonance imaging in the diagnosis and brain stimulation treatment of Parkinson,s disease tremor
NEXT MRI quantitative susceptibility mapping: research advances in central nervous system
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn