Share:
Share this content in WeChat
X
Review
Application of magnetic resonance imaging in the diagnosis and brain stimulation treatment of Parkinson's disease tremor
MA Hang  BAI Yan  WEI Wei  LI Ziqiang  WANG Meiyun 

Cite this article as: Ma H, Bai Y, Wei W, et al. Application of magnetic resonance imaging in the diagnosis and brain stimulation treatment of Parkinson's disease tremor[J]. Chin J Magn Reson Imaging, 2022, 13(1): 143-146. DOI:10.12015/issn.1674-8034.2022.01.033.


[Abstract] Parkinson's disease (PD) is characterized by the dopamine degeneration in substantia nigra and striatum. Its clinical manifestations include motor symptoms tremor, bradykinesia and rigidity, also have additional non-motor symptoms such as depression anxiety, cognitive impairment. Tremor, as one of most common symptoms, the underlying mechanism is still unclear, about three out of four PD patients develop tremor during the course of their disease and tremor-dominant patients generally follow a more benign disease course than non-tremor patients. There is growing evidence that brain stimulation such as deep brain stimulation and transcranial magnetic stimulation has been a treatment option for PD. Recently, magnetic resonance imaging is widely used in the diagnosis and treatment of PD which can provide important information for early diagnosis and treatment effect evaluation from the aspects of structure and function. This paper reviews the application of MRI in the diagnosis of tremor-dominant PD patients and the value of MRI in evaluating the efficacy of brain stimulation therapy.
[Keywords] Parkinson's disease;tremor;medical imaging;magnetic resonance imaging;brain stimulation

MA Hang1, 2   BAI Yan2   WEI Wei2   LI Ziqiang1, 2   WANG Meiyun2*  

1 Xinxiang Medical University, Xinxiang 453003, China

2 Department of Medical Imaging, Henan Provincial People's Hospital, Zhengzhou 450003, China

Wang MY, E-mail: mywang@ha.edu.cn

Conflicts of interest   None.

Received  2021-07-28
Accepted  2021-11-09
DOI: 10.12015/issn.1674-8034.2022.01.033
Cite this article as: Ma H, Bai Y, Wei W, et al. Application of magnetic resonance imaging in the diagnosis and brain stimulation treatment of Parkinson's disease tremor[J]. Chin J Magn Reson Imaging, 2022, 13(1): 143-146.DOI:10.12015/issn.1674-8034.2022.01.033

[1]
Tysnes OB, Storstein A. Epidemiology of Parkinson's disease[J]. J Neural Transm, 2017, 124(8): 901-905. DOI: 10.1007/s00702-017-1686-y.
[2]
Reich SG, Savitt JM. Parkinson's Disease[J]. Med Clin North Am, 2019, 103(2): 337-350. DOI: 10.1016/j.mcna.2018.10.014.
[3]
Fereshtehnejad SM, Postuma RB. Subtypes of Parkinson's Disease: What Do They Tell Us About Disease Progression?[J]. Curr Neurol Neurosci, 2017, 17(4): 34. DOI: 10.1007/s11910-017-0738-x.
[4]
Thenganatt MA, Jankovic J. Parkinson disease subtypes[J]. JAMA neurology, 2014, 71(4): 499-504. DOI: 10.1001/jamaneurol.2013.6233.
[5]
Helmich RC, Hallett M, Deuschl G, et al. Cerebral causes and consequences of parkinsonian resting tremor: a tale of two circuits?[J]. Brain, 2012, 135(Pt 11): 3206-3226. DOI: 10.1093/brain/aws023.
[6]
Bhatia KP, Bain P, Bajaj N, et al. Consensus Statement on the classification of tremors. from the task force on tremor of the International Parkinson and Movement Disorder Society[J]. Mov Disord, 2018, 33(1): 75-87. DOI: 10.1002/mds.27121.
[7]
Armstrong MJ, Okun MS. Diagnosis and Treatment of Parkinson Disease: A Review[J]. Jama, 2020, 323(6): 548-560. DOI: 10.1001/jama.2019.22360.
[8]
Mcgregor MM, Nelson AB. Circuit Mechanisms of Parkinson's Disease[J]. Neuron, 2019, 101(6): 1042-1056. DOI: 10.1016/j.neuron.2019.03.004.
[9]
Helmich RC. The cerebral basis of Parkinsonian tremor: A network perspective[J]. Mov Disord, 2018, 33(2): 219-231. DOI: 10.1002/mds.27224
[10]
Dirkx MF, Den Ouden H, Aarts E, et al. The Cerebral Network of Parkinson's Tremor: An Effective Connectivity fMRI Study[J]. J Neurosci, 2016, 36(19): 362-372. DOI: 10.1523/jneurosci.3634-15.2016.
[11]
Zhang JQ, Wei LQ, Hu XF, et al. Akinetic-rigid and tremor-dominant Parkinson's disease patients show different patterns of intrinsic brain activity[J]. Parkinsonism Relat Disord, 2015, 21(1): 23-30. DOI: 10.1016/j.parkreldis.2014.10.017.
[12]
Ruppert MC, Greuel A, Freigang J, et al. The default mode network and cognition in Parkinson's disease: A multimodal resting-state network approach[J]. Hum Brain Mapp, 2021, 42(8): 2623-2641. DOI: 10.1002/hbm.25393.
[13]
Chen HM, Wang ZJ, Fang JP, et al. Different patterns of spontaneous brain activity between tremor-dominant and postural instability/gait difficulty subtypes of Parkinson's disease: a resting-state fMRI study[J].CNS Neurosci Ther, 2015, 21(10): 855-866. DOI: 10.1111/cns.12464.
[14]
Ma H, Chen H, Fang J, et al. Resting-state functional connectivity of dentate nucleus is associated with tremor in Parkinson's disease[J]. J Neurol, 2015, 262(10): 2247-2256. DOI: 10.1007/s00415-015-7835-z.
[15]
Solstrand Dahlberg L, Lungu O, Doyon J. Cerebellar Contribution to Motor and Non-motor Functions in Parkinson's Disease: A Meta-Analysis of fMRI Findings[J]. Frontiers in Neurology, 2020, 11: 127. DOI: 10.3389/fneur.2020.00127.
[16]
Guan J, Rong Y, Wen Y, et al. Detection and application of neurochemical profile by multiple regional (1)H-MRS in Parkinson's disease[J]. Brain and Behavior, 2017, 7(9): e00792. DOI: 10.1002/brb3.792.
[17]
Cao H, Shi J, Cao B, et al. Evaluation of the Braak staging of brain pathology with (1)H-MRS in patients with Parkinson's disease[J]. Neuroscience Letters, 2017, 660: 57-62. DOI: 10.1016/j.neulet.2017.08.050.
[18]
Barbagallo G, Arabia G, Morelli M, et al. Thalamic neurometabolic alterations in tremulous Parkinson's disease: A preliminary proton MR spectroscopy study[J]. Parkinsonism Relat Disord, 2017, 43: 78-84. DOI: 10.1016/j.parkreldis.2017.07.028.
[19]
Rosenberg Katz K, Herman T, Jacob Y, et al. Gray matter atrophy distinguishes between Parkinson disease motor subtypes[J]. Neurology, 2013, 80(16): 1476-1484. DOI: 10.1212/WNL.0b013e31828cfaa4.
[20]
Nyberg EM, Tanabe J, Honce JM, et al. Morphologic changes in the mesolimbic pathway in Parkinson's disease motor subtypes[J]. Parkinsonism Relat Disord, 2015, 21(5): 536-540. DOI: 10.1016/j.parkreldis.2015.03.008.
[21]
Benito-León J, Serrano JI, Louis ED, et al. Tremor severity in Parkinson's disease and cortical changes of areas controlling movement sequencing: A preliminary study[J]. J Neurosci Res, 2018, 96(8): 1341-1352. DOI: 10.1002/jnr.24248.
[22]
Piccinin CC, Campos LS, Guimarães RP, et al. Differential Pattern of Cerebellar Atrophy in Tremor-Predominant and Akinetic/Rigidity-Predominant Parkinson's Disease[J]. Cerebellum, 2017, 16(3): 623-628. DOI: 10.1007/s12311-016-0834-5.
[23]
Sejnoha MA, Klobusiakova P, Pies A, et al. Patterns of diffusion kurtosis changes in Parkinson's disease subtypes[J]. Parkinsonism Relat Disord, 2020, 81: 96-102. DOI: 10.1016/j.parkreldis.2020.10.032.
[24]
Luo C, Song W, Chen Q, et al. White matter microstructure damage in tremor-dominant Parkinson's disease patients[J]. Neuroradiology, 2017, 59(7): 691-698. DOI: 10.1007/s00234-017-1846-7.
[25]
Nagae LM, Honce JM, Tanabe J, et al. Microstructural Changes within the Basal Ganglia Differ between Parkinson Disease Subtypes[J]. Front Neuroanat, 2016, 10: 17. DOI: 10.3389/fnana.2016.00017.
[26]
Huddleston DE, Langley J, Sedlacik J, et al. In vivo detection of lateral-ventral tier nigral degeneration in Parkinson's disease[J]. Hum Brain Mapp, 2017, 38(5): 2627-2634. DOI: 10.1002/hbm.23547.
[27]
Wang J, Huang Z, Li YF, et al. Neuromelanin-sensitive MRI of the substantia nigra: An imaging biomarker to differentiate essential tremor from tremor-dominant Parkinson's disease[J]. Parkinsonism Relat Disord, 2019, 58: 3-8. DOI: 10.1016/j.parkreldis.2018.07.007.
[28]
Martin-Bastida A, Lao-Kaim NP, Loane C, et al. Motor associations of iron accumulation in deep grey matter nuclei in Parkinson's disease: a cross-sectional study of iron-related magnetic resonance imaging susceptibility[J]. Eur J Neurol, 2017, 24(2): 357-365. DOI: 10.1111/ene.13208.
[29]
He NY, Huang P, Ling HW, et al. Dentate nucleus iron deposition is a potential biomarker for tremor-dominant Parkinson's disease[J]. NMR Biomed, 2017, 30(4). DOI: 10.1002/nbm.3554.
[30]
Chen J, Cai T, Li Y, et al. Different iron deposition patterns in Parkinson's disease subtypes: a quantitative susceptibility mapping study[J]. Quant Imag Med Surg, 2020, 10(11): 2168-2176. DOI: 10.21037/qims-20-285.
[31]
Xiong W, Li LF, Huang L, et al. Different iron deposition patterns in akinetic/rigid-dominant and tremor-dominant Parkinson's disease[J]. Clin Neurol Neurosurg, 2020, 198: 106181. DOI: 10.1016/j.clineuro.2020.106181.
[32]
Chou YH, Hickey PT, Sundman M, et al. Effects of repetitive transcranial magnetic stimulation on motor symptoms in Parkinson disease: a systematic review and meta-analysis[J]. JAMA Neurology, 2015, 72(4): 432-440. DOI: 10.1001/jamaneurol.2014.4380.
[33]
Chen KS, Chen R. Invasive and Noninvasive Brain Stimulation in Parkinson's Disease: Clinical Effects and Future Perspectives[J]. Clin Pharmacol Ther, 2019, 106(4): 763-775. DOI: 10.1002/cpt.1542.
[34]
Kahan J, Urner M, Moran R, et al. Resting state functional MRI in Parkinson's disease: the impact of deep brain stimulation on 'effective' connectivity[J]. Brain, 2014, 137(Pt 4): 1130-1144. DOI: 10.1093/brain/awu027.
[35]
Horn A, Wenzel G, Irmen F, et al. Deep brain stimulation induced normalization of the human functional connectome in Parkinson's disease[J]. Brain, 2019, 142(10): 3129-3143. DOI: 10.1093/brain/awz239.
[36]
Kahan J, Mancini L, Flandin G, et al. Deep brain stimulation has state-dependent effects on motor connectivity in Parkinson's disease[J]. Brain, 2019, 142(8): 2417-2431. DOI: 10.1093/brain/awz164.
[37]
González-García N, Armony JL, Soto J, et al. Effects of rTMS on Parkinson's disease: a longitudinal fMRI study[J]. J Neurol, 2011, 258(7): 1268-1280. DOI: 10.1007/s00415-011-5923-2.
[38]
Muthuraman M, Deuschl G, Koirala N, et al. Effects of DBS in parkinsonian patients depend on the structural integrity of frontal cortex[J]. Sci Rep, 2017, 7: 43571. DOI: 10.1038/srep43571.
[39]
Frizon LA, Gopalakrishnan R, Hogue O, et al. Cortical thickness in visuo-motor areas is related to motor outcomes after STN DBS for Parkinson's disease[J]. Parkinsonism Relat Disord, 2020, 71: 17-22. DOI: 10.1016/j.parkreldis.2020.01.006.
[40]
Voon V, Kubu C, Krack P, et al. Deep brain stimulation: neuropsychological and neuropsychiatric issues[J]. Mov Disord, 2006, 21Suppl 14: S305-327. DOI: 10.1002/mds.20963.
[41]
Radziunas A, Deltuva VP, Tamasauskas A, et al. Neuropsychiatric complications and neuroimaging characteristics after deep brain stimulation surgery for Parkinson's disease[J]. Brain Imaging Behav, 2020, 14(1): 62-71. DOI: 10.1007/s11682-018-9971-4.
[42]
Mure H, Hirano S, Tang CC, et al. Parkinson's disease tremor-related metabolic network: characterization, progression, and treatment effects[J]. NeuroImage, 2011, 54(2): 1244-1253. DOI: 10.1016/j.neuroimage.2010.09.028.
[43]
Flamez A, Wiels W, Van Schuerbeek P, et al. The influence of one session of low frequency rTMS on pre-supplementary motor area metabolites in late stage Parkinson's disease[J]. Clin Neurophysiol, 2019, 130(8): 1292-1298. DOI: 10.1016/j.clinph.2019.04.720.
[44]
Caire F, Ranoux D, Guehl D, et al. A systematic review of studies on anatomical position of electrode contacts used for chronic subthalamic stimulation in Parkinson's disease[J]. Acta Neurochir, 2013, 155(9): 1647-1654; discussion 54. DOI: 10.1007/s00701-013-1782-1.
[45]
Vassal F, Dilly D, Boutet C, et al. White matter tracts involved by deep brain stimulation of the subthalamic nucleus in Parkinson's disease: a connectivity study based on preoperative diffusion tensor imaging tractography[J]. Brit J Neurosurg, 2020, 34(2): 187-195. DOI: 10.1080/02688697.2019.1701630.
[46]
Coenen VA, Rijntjes M, Prokop T, et al. One-pass deep brain stimulation of dentato-rubro-thalamic tract and subthalamic nucleus for tremor-dominant or equivalent type Parkinson's disease[J]. Acta Neurochir, 2016, 158(4): 773-781. DOI: 10.1007/s00701-016-2725-4.

PREV Research advances in MRI diffusion imaging on grading and typing of meningiomas
NEXT Research progress of white matter microstructure analysis methods based on diffusion tensor imaging in visual pathway injury
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn