Share this content in WeChat
Experience Exchang
Modulated flip angle techniques in refocused imaging with extended echo train for diagnosing lower extremity arteriosclerosis obliterans
WANG Peng  PENG Ruchen  ZHANG Ling  ZHONG Jiali 

Cite this article as: Wang P, Peng RC, Zhang L, et al. Modulated flip angle techniques in refocused imaging with extended echo train for diagnosing lower extremity arteriosclerosis obliterans[J]. Chin J Magn Reson Imaging, 2022, 13(1): 126-129. DOI:10.12015/issn.1674-8034.2022.01.026.

[Abstract] Objective To investigate the diagnostic value of magnetic resonance modulated flip angle techniques in refocused imaging with extended echo train (MATRIX) for lower extremity arteriosclerosis obliterans (ASO), to provide a new imaging method for the visualization and accurate diagnosis of lower extremity ASO.Materials and Methods: Twenty-two cases of lower extremity ASO were continuously included. Bilateral lower extremities of all the patients underwent digital subtraction angiography (DSA) and MRI (T1-MATRIX and T2-MATRIX sequences). Measure muscle signal-to-noise ratio (SNR) and thrombus-vessel contrast signal-to-noise ratio (CNR) of T1-MARIX and T2-MARIX. The differences and inter-observer consistency in image quality and diagnostic confidence were analyzed. DSA was used as the reference to calculate the diagnostic accuracy of MATRIX sequences for the detection of thrombus.Results In 22 patients with lower extremity ASO (211 vessels), occlusion caused by thrombosis and plaque was found in 68 vessels. Using DSA diagnosis as the reference criteria, the sensitivity, specificity, accuracy of detection, positive predictive value, and negative predictive value of lower extremity ASO in MATRIX at the level of vascular segments were 90.63%, 93.20%. 92.56%, 85.29% and 95.80%, respectively. The interobserver agreements in image quality and diagnostic confidence of the MATRIX sequences were excellent (ICC≥0.75, P<0.05).Conclusions MATRIX can realize contrast-free examination and imaging of lower extremity ASO, and can carry out definite diagnosis. It has high image quality and diagnostic efficiency, and can be applied to clinical practice.
[Keywords] lower extremity arteriosclerosis obliterans;magnetic resonance imaging;black blood thrombus imaging;modulated flip angle technique in refocused imaging with extended echo train;imaging examinations

WANG Peng   PENG Ruchen   ZHANG Ling   ZHONG Jiali  

Department of Radiology, Beijing Luhe Hospital, Capital Medical University, Beijing 101199, China

Peng RC, E-mail:

Conflicts of interest   None.

Received  2021-07-19
Accepted  2021-11-26
DOI: 10.12015/issn.1674-8034.2022.01.026
Cite this article as: Wang P, Peng RC, Zhang L, et al. Modulated flip angle techniques in refocused imaging with extended echo train for diagnosing lower extremity arteriosclerosis obliterans[J]. Chin J Magn Reson Imaging, 2022, 13(1): 126-129.DOI:10.12015/issn.1674-8034.2022.01.026

Ni LH, Wang XK, Zhao CY. POSSUM score combined with APACHE Ⅱ score to guide the clinical study of interventional treatment of lower extremity arteriosclerosis obliterans[J]. Chin J Interv Radiol, 2019, 7(1): 21-25. DOI: 10.3877/cma.j.issn.2095-5782.2019.01.004.
Takahara M. Diabetes Mellitus and Lower Extremity Peripheral Artery Disease[J]. JMA J, 2021, 4(3): 225-231. DOI: 10.31662/jmaj.2021-0042.
Liu H, Dong ZH, Fu WG. Diagnosis and treatment of acute lower limb ischemia[J]. Chin J Pract Surg, 2020,40(12): 1381-1384. DOI: 10.19538/j.cjps.issn1005-2208.2020.12.11.
AL-Smadi AS, Abdalla RN, Elmokadem AH, et al. Diagnostic Accuracy of High-Resolution Black-Blood MRI in the Evaluation of Intracranial Large-Vessel Arterial Occlusions[J]. Am J Neuroradiol, 2019, 40(6): 954-959. DOI: 10.3174/ajnr.A6065.
Chaganti J, Woodford H, Tomlinson S, et al. Black blood imaging of intracranial vessel walls[J]. Pract Neurol, 2021, 21(2): 101-107. DOI: 10.1136/practneurol-2020-002806.
Milotta G, Ginami G, Bustin A, et al. 3D Whole-heart free-breathing qBOOST-T2 mapping[J]. Magn Reson Med, 2020,83(5): 1673-1687. DOI: 10.1002/mrm.28039.
Wang YT, Liu XK, Haraldsson H, et al. Quantitative measurement of atheroma burden: reproducibility in serial studies of atherosclerotic femoral arteries[J]. MAGMA, 2020, 33(6): 855-863. DOI: 10.1007/s10334-020-00843-7.
Han Y, Guan M, Zhu Z, et al. Assessment of longitudinal distribution of subclinical atherosclerosis in femoral arteries by three-dimensional cardiovascular magnetic resonance vessel wall imaging[J]. J Cardiovasc Magn Reson, 2018,20(1): 60. DOI: 10.1186/s12968-018-0482-7.
Peng RC, Du XY. The application of T2-MATRIX sequence in the diagnosis of acute deep venous thrombosis of lower limbs[J]. Chin J Magn Reson Imaging, 2019, 10(4): 249-253. DOI: 10.12015/issn.1674-8034.2019.04.002.
Bura-Rivière A, Martin R. Lower-extremity artery disease (LEAD)[J]. Presse Med, 2018,47(1): 62-65. DOI: 10.1016/j.lpm.2017.09.018.
Liu B, Gao S, Chang Z, et al. Lower extremity CT angiography at 80 kVp using iterative model reconstruction[J]. Diagn Interv Imaging, 2018, 99(9): 561-568. DOI: 10.1016/j.diii.2018.04.006.
Napoli A, Anzidei M, Zaccagna F, et al. Peripheral arterial occlusive disease: diagnostic performance and effect on therapeutic management of 64-section CT angiography[J]. Radiology, 2011, 261(3): 976-986. DOI: 10.1148/radiol.11103564.
Sommer WH, Johnson TR, Becker CR, et al. The value of dual-energy bone removal in maximum intensity projections of lower extremity computed tomography angiography[J]. Invest Radiol, 2009, 44(5): 285-292. DOI: 10.1097/RLI.0b013e31819b70ba.
Attari H, Cao Y, Elmholdt T R, et al. A Systematic Review of 639 Patients with Biopsy-confirmed Nephrogenic Systemic Fibrosis[J]. Radiology, 2019, 292(2): 376-386. DOI: 10.1148/radiol.2019182916.
ROGERS S, CARREIRA J, PHAIR A, et al. Comparison Between Below Knee Contrast Enhanced Tomographic 3D Ultrasound and CT, MR or Catheter Angiography for Peripheral Artery Imaging[J]. Eur J Vasc Endovasc, 2021, 61(3): 440-446. DOI: 10.1016/j.ejvs.2020.10.007.
Knobloch G, Lauff M, Hanke M, et al. Non-contrast-enhanced MR-angiography (MRA) of lower extremity peripheral arterial disease at 3 tesla: Examination time and diagnostic performance of 2D quiescent-interval single-shot MRA vs. 3D fast spin-Echo MRA[J]. Magn Reson Imaging, 2021, 76: 17-25. DOI: 10.1016/j.mri.2020.10.016.
Varga-Szemes A, Penmetsa M, Emrich T, et al. Diagnostic accuracy of non-contrast quiescent-interval slice-selective (QISS) MRA combined with MRI-based vascular calcification visualization for the assessment of arterial stenosis in patients with lower extremity peripheral artery disease[J]. Eur Radiol, 2021, 31(5): 2778-2787. DOI: 10.1007/s00330-020-07386-4.
Varga-Szemes A, Wichmann JL, Schoepf UJ, et al. Accuracy of Noncontrast Quiescent-Interval Single-Shot Lower Extremity MR Angiography Versus CT Angiography for Diagnosis of Peripheral Artery Disease: Comparison With Digital Subtraction Angiography[J]. Jacc-Cardiovasc Inte, 2017,10(10Pt A): 1116-1124. DOI: 10.1016/j.jcmg.2016.09.030.
Ginami G, Neji R, Phinikaridou A, et al. Simultaneous bright- and black-blood whole-heart MRI for noncontrast enhanced coronary lumen and thrombus visualization[J]. Magn Reson Med, 2018, 79(3): 1460-1472. DOI: 10.1002/mrm.26815.
Sigovan M, Bidet C, Bros S, et al. 3D black blood MR angiography of the carotid arteries. A simple sequence for plaque hemorrhage and stenosis evaluation[J]. Magnetic resonance imaging, 2017, 42: 95-100. DOI: 10.1016/j.mri.2017.06.004.
Scheffler M, Pellaton A, Boto J, et al. Hemorrhagic Plaques in Mild Carotid Stenosis: The Risk of Stroke[J]. Can J Neurol Sci, 2021, 48(2): 218-225. DOI: 10.1017/cjn.2020.177.
Yang F, Liu HJ, Wang ZH, et al. 3.0T MR black blood technology in fibrin targeted contrast agent dynamic evaluation of rabbit carotid artery thrombosis application[J]. Chin J Med Imaging Technol, 2009, 25(9): 1529-1532. DOI: 10.3321/j.issn:1003-3289.2009.09.001.
Bradley WG. MR appearance of hemorrhage in the brain[J]. Radiology, 1993, 189(1): 15-26. DOI: 10.1148/radiology.189.1.8372185.
Zhang L, Peng RC, Zhang J, et al. Diagnostic value of two MATRIX techniques for deep venous thrombosis of lower extremities[J]. Chin J Med Imaging, 2020, 28(10): 792-797. DOI: 10.3969/j.issn.1005-5185.2020.10.018.

PREV Value of preoperative MRI in the diagnosis of early endometrial carcinoma
NEXT Collisions in sellar area one case: pituitary adenomas in sellar area coexist with craniopharyngiomas

Tel & Fax: +8610-67113815    E-mail: