Share:
Share this content in WeChat
X
Experience Exchang
The study of different kinds of primary glaucoma by diffusion tensor imaging
WANG Chunjie  WANG Yutong  ZHAI Fangbing  LI Jingmin  DONG Yang 

Cite this article as: Wang CJ, Wang YT, Zhai FB, et al. The study of different kinds of primary glaucoma by diffusion tensor imaging[J]. Chin J Magn Reson Imaging, 2022, 13(1): 114-117. DOI:10.12015/issn.1674-8034.2022.01.023.


[Abstract] Objective To evaluate the microscopic changes of optic pathway in different kinds of primary glaucoma by diffusion tensor imaging (DTI), and investigate the relationship to the severity of glaucoma.Materials and Methods: There were 10 cases (20 eyes in each group) in each group of chronic angle-closure glaucoma (CACG), acute angle-closure glaucoma (AACG) and primary open-angle glaucoma (POAG). And 10 cases (20 eyes) of control subjects were recruited in this study. The mean defect (MD) of view was checked. All subjects underwent DTI examination. The fractional anisotropy (FA), average diffusion coefficient (ADC) of optic nerve and optic radiation were measured by MR post-processing software and were analyzed statistically. All these were analyzed by SPSS 22.0.Results FA of optic nerve were lower than that of optic radiation in CACG, AACG and POAG (P<0.05). There were no significant statistical difference in control group (P>0.05). FA of optic nerves and optic radiation in group CACG, AACG and POCG were significantly lower than the controls (P<0.05). The ADC values of optic nerve in group CACG, AACG and the right optic radiation in AACG were significantly higher than controls (P<0.05). FA of right optic nerves in group AACG were significantly lower than group CACG and POAG (P=0.015, 0.005), ADC of optic nerves in group AACG were higher than group POAG (P=0.011, 0.040), ADC of right optic radiation in group AACG were higher than group POAG (P=0.003). FA of right optic nerve in CACG and AACG were positively correlated with MD (r=0.844, P=0.002; r=0.648, P=0.043).Conclusions The parameters of DTI reflected the microstructures of the optic pathway in different kinds of primary glaucoma, which wouldbe helpful in the diagnosis, curative effect evaluation of glaucoma.
[Keywords] glaucoma;optic nerve;optic radiation;mean defect of visual field defects;magnetic resonance imaging;diffusion tensor imaging

WANG Chunjie1   WANG Yutong2   ZHAI Fangbing1   LI Jingmin2   DONG Yang1*  

1 Department of Radiology, the Second Hospital of Dalian Medical University, Dalian 116027, China

2 Department of Ophthalmonogy, the Second Hospital of Dalian Medical University, Dalian 116027, China

Dong Y, E-mail: 23121546@qq.com

Conflicts of interest   None.

Received  2021-07-15
Accepted  2021-12-17
DOI: 10.12015/issn.1674-8034.2022.01.023
Cite this article as: Wang CJ, Wang YT, Zhai FB, et al. The study of different kinds of primary glaucoma by diffusion tensor imaging[J]. Chin J Magn Reson Imaging, 2022, 13(1): 114-117.DOI:10.12015/issn.1674-8034.2022.01.023

[1]
Quigley HA. Number of people with glaucoma worldwide[J]. Br J Ophthalmol, 1996, 80(5): 389-393. DOI: 10.1136/bjo.80.5.389.
[2]
Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020[J]. Br J Ophthalmol, 2006, 90(3): 262-267. DOI: 10.1136/bjo.2005.081224.
[3]
Tham YC, Li X, Wong TY, et al. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis[J]. Ophthalmology, 2014, 121(11): 2081-2090. DOI: 10.1016/j.ophtha.2014.05.013.
[4]
Tian Q, Shi DP, Guo HL, et al. Study of magnetic resonance diffusion tensor imaging in diabetic optic neuropathy[J]. Chin J Magn Reson Imaging, 2012, 3(1): 12-14. DOI: 10.3969/j.issn.1674-8034.2012.01.004.
[5]
Miller N, Liu Y, Krivochenitser R, et al. Linking neural and clinical measures of glaucoma with diffusion magnetic resonance imaging (dMRI)[J]. PLoS One, 2019, 14(5): e0217011. DOI: 10.1371/journal.pone.0217011.
[6]
Wang R, Tang Z, Sun X, et al. White Matter Abnormalities and Correlation With Severity in Normal Tension Glaucoma: A Whole Brain Atlas-Based Diffusion Tensor Study[J]. Invest Ophthalmol Vis Sci, 2018, 59(3): 1313-1322. DOI: 10.1167/iovs.17-23597.
[7]
Li T, Miao W, He HG, et al. Diffusion tensor imaging value analysis of visual radiation in patients with primary open Angle glaucoma[J]. Natl Med J China, 2017, 97(5): 347-352. DOI: 10.3760/cma.j.issn.0376-2491.2017.05.006.
[8]
Haykal S, Curcic Blake B, Jansonius NM, et al. Fixel-based analysis of visual pathway white matter in primary open-angle glaucoma[J]. Invest Ophthalmol Vis Sci, 2019, 60(12): 3803-3812. DOI: 10.1167/iovs.19-27447.
[9]
Song P, Wang J, Bucan K, et al. National and subnational prevalence and burden of glaucoma in China: A systematic analysis[J]. J Glob Health, 2017, 7(2): 020705. DOI: 10.7189/jogh.07.020705.
[10]
Zhang QJ, Wang D, Bai ZL, et al. Diffusion tensor imaging of optic nerve and optic radiation in primary chronic angle-closure glaucoma using 3T magnetic resonance imaging[J]. Int J Ophthalmol, 2015, 8(5): 975-979. DOI: 10.3980/j.issn.2222-3959.2015.05.22.
[11]
Weinreb RN, Aung T, Medeiros FA. The pathophysiology and treatment of glaucoma: a review[J]. JAMA, 2014, 311(18): 1901-1911. DOI: 10.1001/jama.2014.3192.
[12]
Tatewaki Y, Mutoh T, Thyreau B, et al. Phase Difference-Enhanced Magnetic Resonance (MR) Imaging (PADRE) Technique for the Detection of Age-Related Microstructural Changes in Optic Radiation: Comparison with Diffusion Tensor Imaging (DTI)[J]. Med Sci Monit, 2017, 23: 5495-5503. DOI: 10.12659/msm.905571.
[13]
Omodaka K, Murata T, Sato S, et al. Correlation of magnetic resonance imaging optic nerve parameters to optical coherence tomography and the visual field in glaucoma[J]. Clin Exp Ophthalmol, 2014, 42(4): 360-3688. DOI: 10.1111/ceo.12237.
[14]
Michelson G, Engelhorn T, Wärntges S, et al. DTI parameters of axonal integrity and demyelination of the optic radiation correlate with glaucoma indices[J]. Graefes Arch Clin Exp Ophthalmol, 2013, 251(1): 243-253. DOI: 10.1007/s00417-011-1887-2.
[15]
Le Bihan D, Iima M. Diffusion Magnetic Resonance Imaging: What Water Tells Us about Biological Tissues[J]. PLoS Biol, 2015, 13(7): e1002203. DOI: 10.1371/journal.pbio.1002203.
[16]
Colbert MK, Ho LC, van der Merwe Y, et al. Diffusion Tensor Imaging of Visual Pathway Abnormalities in Five Glaucoma Animal Models[J]. Invest Ophthalmol Vis Sci, 2021, 62(10): 21. DOI: 10.1167/iovs.62.10.21.
[17]
Sun Z, Parra C, Bang JW, et al. Diffusion Kurtosis Imaging Reveals Optic Tract Damage That Correlates with Clinical Severity in Glaucoma[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2020, 1746-1749. DOI: 10.1109/EMBC44109.2020.9176192.
[18]
Nucci C, Garaci F, Altobelli S, et al. Diffusional Kurtosis Imaging of White Matter Degeneration in Glaucoma[J]. J Clin Med, 2020, 9(10): 3122. DOI: 10.3390/jcm9103122.
[19]
Wang Q, Chen W, Wang H, et al. Reduced Functional and Anatomic Interhemispheric Homotopic Connectivity in Primary Open-Angle Glaucoma: A Combined Resting State-fMRI and DTI Study[J]. Invest Ophthalmol Vis Sci, 2018, 59(5): 1861-1868. DOI: 10.1167/iovs.17-23291.
[20]
Haykal S, Jansonius NM, Cornelissen FW. Progression of Visual Pathway Degeneration in Primary Open-Angle Glaucoma: A Longitudinal Study[J]. Front Hum Neurosci, 2021, 15: 630898. DOI: 10.3389/fnhum.2021.630898.
[21]
Li M, Ke M, Song Y, et al. Diagnostic utility of central damage determination in glaucoma by magnetic resonance imaging: An observational study[J]. Exp Ther Med, 2019, 17(3): 1891-1895. DOI: 10.3892/etm.2018.7134.
[22]
Chan JW, Chan NCY, Sadun AA. Glaucoma as Neurodegeneration in the Brain[J]. Eye Brain, 2021, 13: 21-28. DOI: 10.2147/EB.S293765.
[23]
You M, Rong R, Zeng Z, et al. Transneuronal Degeneration in the Brain During Glaucoma[J]. Front Aging Neurosci, 2021, 13: 643685. DOI: 10.3389/fnagi.2021.643685.
[24]
Salinas-Navarro M, Alarcón-Martínez L, Valiente-Soriano FJ, et al. Ocular hypertension impairs optic nerve axonal transport leading to progressive retinal ganglion cell degeneration[J]. Exp Eye Res, 2010, 90(1): 168-183. DOI: 10.1016/j.exer.2009.10.003.
[25]
Abbott CJ, Choe TE, Lusardi TA, et al. Evaluation of retinal nerve fiber layer thickness and axonal transport 1 and 2 weeks after 8 hours of acute intraocular pressure elevation in rats[J]. Invest Ophthalmol Vis Sci, 2014, 55(2): 674-687. DOI: 10.1167/iovs.13-12811.
[26]
Tribble JR, Otmani A, Kokkali E, et al. Retinal Ganglion Cell Degeneration in a Rat Magnetic Bead Model of Ocular Hypertensive Glaucoma[J]. Transl Vis Sci Technol, 2021, 10(1): 21. DOI: 10.1167/tvst.10.1.21.
[27]
Li M, Ke M, Song Y, et al. Diagnostic utility of central damage determination in glaucoma by magnetic resonance imaging: An observational study[J]. Exp Ther Med, 2019, 17(3): 1891-1895. DOI: 10.3892/etm.2018.7134.
[28]
Yucel YH, Gupta N. A framework to explore the visual brain in glaucoma with lessons from models and man[J]. Exp Eye Res, 2015, 141: 171-178. DOI: 10.1016/j.exer.2015.07.004.
[29]
Kaushik M, Graham SL, Wang C, et al. A topographical relationship between visual field defects and optic radiation changes in glaucoma[J]. Invest Ophthalmol Vis Sci, 2014, 55(9): 5770-5775. DOI: 10.1167/iovs.14-14733.
[30]
Takahashi N, Matsunaga N, Natsume T, et al. A longitudinal comparison in cynomolgus macaques of the effect of brimonidine on optic nerve neuropathy using diffusion tensor imaging magnetic resonance imaging and spectral domain optical coherence tomography[J]. Heliyon, 2021, 7(4): e06701. DOI: 10.1016/j.heliyon.2021.e06701.

PREV Magnetic resonance imaging study of olfactory bulb volume in normal children
NEXT Prediction of axillary lymph node metastasis in breast cancer based on radiomics nomogram of MRI
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn