Share:
Share this content in WeChat
X
Technical Article
The effect of bandwidth on evaluation of T1, T2 relaxation times and proton density using synthetic MRI: A phantom study
ZHENG Zuofeng  WANG Zhenchang  YIN Hongxia  YANG Jiafei  ZHANG Dongpo  MA Jun 

Cite this article as: Zheng ZF, Wang ZC, Yin HX, et al. The effect of bandwidth on evaluation of T1, T2 relaxation times and proton density using synthetic MRI: A phantom study[J]. Chin J Magn Reson Imaging, 2022, 13(1): 98-102. DOI:10.12015/issn.1674-8034.2022.01.019.


[Abstract] Objective To evaluate the effect of bandwidth on quantification of T1, T2 relaxation times and proton density using multi-dynamic multi-echo sequence.Materials and Methods: Phantoms consisting of 3 kinds of materials with different T1, T2 and PD [gray matter (GM), white matter (WM), cerebrospinal fluid (CSF)] were included in the study. The phantoms were scanned 9 times using MDME sequence with 7 sets of scan parameters with different bandwidths (19.23 kHz—100.00 kHz). T1, T2, and PD maps were acquired and processed using MAGiC (magnetic resonance imaging compilation) post-processing software, and T1, T2, PD values were acquired. Intragroup coefficient of variation (CV) was performed to evaluate the reproducibility of measured values. Intergroup CV was used to evaluate the discrepancy of measured values across all the groups. The T1, T2 values between GM and WM were compared with paired-samples t test. The PD values between GM and WM were compared with Wilcoxon singled Rank test. Statistical analysis was performed using SPSS software (SPSS for Windows, 23.0.0.0, IBM).Results The highest intragroup CVs of T1, T2 and PD were 2.09%, 8.73%, 10.61%, respectively. The highest intergroup CVs of T1, T2 and PD values were 1.36%, 2.85%, 3.72%, respectively. Significant differences were revealed when comparing T1 and T2 values between GM and WM (P<0.01) and no significant differences were found when comparing PD values between GM and WM (P>0.05).Conclusions T1 and T2 measurements are not affected by bandwidth within range of 19.23 kHz—100.00 kHz. Repeatability of PD measurements is reduced when the bandwidth is below 50 kHz.
[Keywords] synthetic magnetic resonance imaging;T1 relaxation;T2 relaxation;proton density

ZHENG Zuofeng1, 2   WANG Zhenchang1*   YIN Hongxia1   YANG Jiafei2   ZHANG Dongpo2   MA Jun2  

1 Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China

2 Department of Radiology, Beijing ChuiYangLiu Hospital, Beijing, 100022, China

Wang ZC, E-mail: cjr.wzhch@vip.163.com

Conflicts of interest   None.

Received  2021-07-27
Accepted  2021-11-09
DOI: 10.12015/issn.1674-8034.2022.01.019
Cite this article as: Zheng ZF, Wang ZC, Yin HX, et al. The effect of bandwidth on evaluation of T1, T2 relaxation times and proton density using synthetic MRI: A phantom study[J]. Chin J Magn Reson Imaging, 2022, 13(1): 98-102.DOI:10.12015/issn.1674-8034.2022.01.019

[1]
Warntjes JB, Leinhard OD, West J, et al. Rapid magnetic resonance quantification on the brain: Optimization for clinical usage[J]. Magn Reson Med, 2008, 60(2): 320-329. DOI: 10.1002/mrm.21635.
[2]
Krauss W, Gunnarsson M, Andersson T, et al. Accuracy and reproducibility of a quantitative magnetic resonance imaging method for concurrent measurements of tissue relaxation times and proton density[J]. Magn Reson Imaging, 2015, 33(5): 584-591. DOI: 10.1016/j.mri.2015.02.013.
[3]
Hagiwara A, Hori M, Yokoyama K, et al. Synthetic MRI in the Detection of Multiple Sclerosis Plaques[J]. AJNR Am J Neuroradiol, 2017, 38(2): 257-263. DOI: 10.3174/ajnr.A5012.
[4]
Tanenbaum LN, Tsiouris AJ, Johnson AN, et al. Synthetic MRI for Clinical Neuroimaging: Results of the Magnetic Resonance Image Compilation (MAGiC) Prospective, Multicenter, Multireader Trial[J]. AJNR Am J Neuroradiol, 2017, 38(6): 1103-1110. DOI: 10.3174/ajnr.A5227.
[5]
Krauss W, Gunnarsson M, Nilsson M, et al. Conventional and synthetic MRI in multiple sclerosis: a comparative study[J]. Eur Radiol, 2018, 28(4): 1692-1700. DOI: 10.1007/s00330-017-5100-9.
[6]
Duchaussoy T, Budzik JF, Norberciak L, et al. Synthetic T2 mapping is correlated with time from stroke onset: a future tool in wake-up stroke management?[J]. Eur Radiol, 2019, 29(12): 7019-7026. DOI: 10.1007/s00330-019-06270-0.
[7]
Park M, Moon Y, Han SH, et al. Myelin loss in white matter hyperintensities and normal-appearing white matter of cognitively impaired patients: a quantitative synthetic magnetic resonance imaging study[J]. Eur Radiol, 2019, 29(9): 4914-4921. DOI: 10.1007/s00330-018-5836-x.
[8]
Lou B, Jiang Y, Li C, et al. Quantitative Analysis of Synthetic Magnetic Resonance Imaging in Alzheimer's Disease[J]. Front Aging Neurosci, 2021, 13:638731. DOI: 10.3389/fnagi.2021.638731.
[9]
Lu N, Li CM, Li SH, et al. Quantitative investigation of global volumetry and relaxometry of the brain in Parkinson's disease patients using synthetic MRI[J]. Chin J Magn Reson Imaging, 2021, 12(4): 1-5, 29. DOI: 10.12015/issn.1674-8034.2021.04.001.
[10]
Boudabbous S, Neroladaki A, Bagetakos I, et al. Feasibility of synthetic MRI in knee imaging in routine practice[J]. Acta Radiol Open, 2018, 7(5): 2058460118769686. DOI: 10.1177/2058460118769686.
[11]
Fritz J. T2 Mapping without Additional Scan Time Using Synthetic Knee MRI [J]. Radiology, 2019, 293(3): 631-632. DOI: 10.1148/radiol.2019192046.
[12]
Jung Y, Gho SM, Back SN, et al. The feasibility of synthetic MRI in breast cancer patients: comparison of T2 relaxation time with multiecho spin echo T2 mapping method[J]. Br J Radiol, 2018, 20180479. DOI: 10.1259/bjr.20180479.
[13]
Matsuda M, Kido T, Tsuda T, et al. Utility of synthetic MRI in predicting the Ki-67 status of oestrogen receptor-positive breast cancer: a feasibility study[J]. Clin Radiol, 2020, 75(5): 398 e391-398 e398. DOI: 10.1016/j.crad.2019.12.021.
[14]
Drake-Perez M, Delattre BM A, Boto J, et al. Normal Values of Magnetic Relaxation Parameters of Spine Components with the Synthetic MRI Sequence[J]. AJNR Am J Neuroradiol, 2018, 39(4): 788-795. DOI: 10.3174/ajnr.A5566.
[15]
Vargas MI, Drake-Perez M, Delattre BMA, et al. Feasibility of a Synthetic MR Imaging Sequence for Spine Imaging[J]. AJNR Am J Neuroradiol, 2018, 39(9): 1756-1763. DOI: 10.3174/ajnr.A5728.
[16]
Jiang Y, Yu L, Luo X, et al. Quantitative synthetic MRI for evaluation of the lumbar intervertebral disk degeneration in patients with chronic low back pain[J]. Eur J Radiol, 2020, 124:108858. DOI: 10.1016/j.ejrad.2020.108858.
[17]
Zhao L, Liang M, Wang LY, et al. Predictive value of histogram parameters based on synthetic MRI for extramural venous invasion of rectal cancer[J]. Chin J Radiol, 2021, 55(6): 609-614. DOI: 10.3760/cma.j.cn112149-20200707-00901.
[18]
Mai J, Abubrig M, Lehmann T, et al. T2 Mapping in Prostate Cancer[J]. Invest Radiol, 2019, 54(3): 146-152. DOI: 10.1097/RLI.0000000000000520.
[19]
Kang KM, Choi SH, Kim H, et al. The Effect of Varying Slice Thickness and Interslice Gap on T1 and T2 Measured with the Multidynamic Multiecho Sequence[J]. Magn Reson Med Sci, 2019, 18(2): 126-133. DOI: 10.2463/mrms.mp.2018-0010.
[20]
Saccenti L, Andica C, Hagiwara A, et al. Brain tissue and myelin volumetric analysis in multiple sclerosis at 3T MRI with various in-plane resolutions using synthetic MRI[J]. Neuroradiology, 2019, 61(11): 1219-1227. DOI: 10.1007/s00234-019-02241-w.
[21]
Dai YF, Zhang M, Zhang M, et al. Effect of bandwidth on abdominal imaging quality in 3.0 T MR[J]. Chin J Med Imaging. 2020, 30(3): 441-443+452.
[22]
Hagiwara A, Warntjes M, Hori M, et al. SyMRI of the Brain: Rapid Quantification of Relaxation Rates and Proton Density, With Synthetic MRI, Automatic Brain Segmentation, and Myelin Measurement[J]. Invest Radiol, 2017, 52(10): 647-657. DOI: 10.1097/RLI.0000000000000365.
[23]
Hagiwara A, Hori M, Cohen-Adad J, et al. Linearity, Bias, Intrascanner Repeatability, and Interscanner Reproducibility of Quantitative Multidynamic Multiecho Sequence for Rapid Simultaneous Relaxometry at 3 T: A Validation Study With a Standardized Phantom and Healthy Controls[J]. Invest Radiol, 2019, 54(1): 39-47. DOI: 10.1097/RLI.0000000000000510.
[24]
West J, Warntjes JB, Lundberg P. Novel whole brain segmentation and volume estimation using quantitative MRI[J]. Eur Radiol, 2012, 22(5): 998-1007. DOI: 10.1007/s00330-011-2336-7.
[25]
Ji S, Yang D, Lee J, et al. Synthetic MRI: Technologies and Applications in Neuroradiology[J]. J Magn Reson Imaging, 2020, DOI: 10.1002/jmri.27440.

PREV Experimental study of Gd-EOB-DTPA dynamic contrast-enhanced magnetic resonance imaging quantitative assessment of moderate liver fibrosis value in rats
NEXT Application of in-phase and out-of-phase imaging in the grading of gliomas
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn