Share:
Share this content in WeChat
X
Review
Application and development of PET/MRI in epilepsy
ZHANG Siyu  ZHANG Le  SUN Hongzan 

Cite this article as: Zhang SY, Zhang L, Sun HZ. Application and development of PET/MRI in epilepsy. Chin J Magn Reson Imaging, 2019, 10(2): 153-156. DOI:10.12015/issn.1674-8034.2019.02.016.


[Abstract] Epilepsy is one of the most common chronic neurological diseases for patients and it frequently occurs, which confers a weighty disease-related burden on individuals and families. In recent years, the field of neuroimaging has undergone dramatic development. Positron emission computed tomography/magnetic resonance imaging (PET/MRI) which provide complementary information by combining excellent soft tissue contrast and spatial resolution of MRI and high sensitivity and molecular specificity of PET came into being. PET/MRI has an obvious advantage in locating a seizure focus and the improvement of the outcome of the surgery.In this review, we identify the recent developments of PET/MRI in epilepsy.
[Keywords] epilepsy;magnetic resonance imaging;positron emission computed tomography

ZHANG Siyu Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, China

ZHANG Le Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, China

SUN Hongzan* Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, China

*Corresponding to: Sun HZ, E-mail: sunhongzan@126.com

Conflicts of interest   None.

ACKNOWLEDGMENTS  This work was part of Provincial Key Research and Development Program and Guidance Program of Liaoning Province No. 2017225012
Received  2018-07-24
Accepted  2018-10-18
DOI: 10.12015/issn.1674-8034.2019.02.016
Cite this article as: Zhang SY, Zhang L, Sun HZ. Application and development of PET/MRI in epilepsy. Chin J Magn Reson Imaging, 2019, 10(2): 153-156. DOI:10.12015/issn.1674-8034.2019.02.016.

[1]
Engel J Jr, Wiebe S, French J, et al. Practice parameter: temporal lobe and localized neocortical resections for epilepsy. Epilepsia, 2003, 44(6): 741-751.
[2]
Morimoto E, Okada T, Kanagaki M, et al. Evaluation of focus laterality in temporal lobe epilepsy: a quantitative study comparing double inversion-recovery MR imaging at 3 T with FDG-PET. Epilepsia, 2013, 54(12): 2174-2183.
[3]
Werner P, Barthel H, Drzezga A, et al. Current status and future role of brain PET/MRI in clinical and research settings. Eur J Nucl Med Mol Imaging, 2015, 42(3): 512-526.
[4]
Kumar YK, Mehta SB, Patil U. A review of epilepsy diagnosis using PET parameters. J Behavioral & Brain Sci, 2012, 2(3): 415-425.
[5]
Rubí S, Setoain X, Donaire A, et al. Validation of FDG-PET/MRI coregistration in nonlesional refractory childhood epilepsy. Epilepsia, 2011, 52(12): 2216-2224.
[6]
Catana C, Drzezga A, Heiss WD, et al. PET/MRI for neurologic applications. J Nucl Med, 2012, 53(12): 1916-1925.
[7]
Catana C, Benner T, van der Kouwe A, et al. MRI-assisted PET motion correction for neurologic studies in an integrated MR-PET scanner. J Nucl Med, 2011, 52(1): 154-161.
[8]
Lee KK, Salamon N. [18F]fluorodeoxyglucose-positron-emission tomography and MR imaging coregistration for presurgical evaluation of medically refractory epilepsy. AJNR Am J Neuroradiol, 2009, 30(10): 1811-1816.
[9]
Fernández S, Donaire A, Serès E, et al. PET/MRI and PET/MRI/SISCOM coregistration in the presurgical evaluation of refractory focal epilepsy. Epilepsy Res, 2015, 111: 1-9.
[10]
Shinad HW, Jewellsb V, Sheikhb A, et al. Initial experience in hybrid PET-MRI for evaluation of refractory focal onset epilepsy. Seizure, 2015, 31: 1-4.
[11]
O'Brien TJ, Hicks RJ, Ware R, et al. The utility of a 3-dimensional, large-field-of-view, sodium iodide crystal-based PET scanner in the presurgical evaluation of partial epilepsy. J Nucl Med, 2001, 42(8): 1158-1165.
[12]
Theodore WH, Sato S, Kufta CV, et al. FDG-positron emission tomography and invasive EEG: seizure focus detection and surgical outcome. Epilepsia, 1997, 38(1): 81-86.
[13]
Maczewska J, Rysz A, Palczewski P, et al. Usefulness of PET/CT in diagnosis of temporal epilepsy. J Neurol Sci, 2013, 333(Suppl 1): e57.
[14]
桑林,张凯,张建国,等. PET-MRI影像融合技术在药物难治性癫痫术前评估中的价值.中华神经外科杂志, 2017, 33(6): 559-563.
[15]
Najm IM, Tilelli CQ, Oghlakian R. Pathophysiological mechanisms of focal cortical dysplasia: a critical review of human tissue studies and animal models. Epilepsia, 2007, 48(Suppl 2): 21-32.
[16]
Paldino MJ, Yang E, Jones JY, et al. Comparison of the diagnostic accuracy of PET/MRI to PET/CT-acquired FDG brain exams for seizure focus detection: a prospective study. Pediatr Radiol, 2017, 47(11):1500-1507.
[17]
Salamon N, Kung J, Shaw SJ, et al. FDG-PET/MRI coregistration improves detection of cortical dysplasia in patients with epilepsy. Neurology, 2008, 71(20): 1594-1601.
[18]
Nabavizadeh SA, Nasrallah I, Dubroff J. Emerging PET/MRI applications in neuroradiology and neuroscience. Clin Transl Imaging, 2017, 5(2): 121-133.
[19]
Wang X, Zhang C, Wang Y, et al. Prognostic factors for seizure outcome in patients with MRI-negative temporal lobe epilepsy: a meta-analysis and systematic review. Seizure, 2016, 38: 54-62.
[20]
王国福,杨明,栾国明,等. PET-MRI影像融合技术在颞叶癫痫手术中的应用.中国临床神经外科杂志, 2017, 22(6): 372-375.
[21]
Heiss WD. Hybrid MR/PET imaging in neurology: Present applications and prospects for the future. J Nucl Med, 2016, 57(7): 993-995.
[22]
Chassoux F, Rodrigo S, Semah F, et al. FDG-PET improves surgical outcome in negative MRI taylortype focal cortical dysplasias. Neurology, 2010, 75(24): 2168-2175.
[23]
Yankam NJ, Gray KR, Costes N, et al. Advanced [18F]FDG and [11C]flumazenil PET analysis for individual outcome prediction after temporal lobe epilepsy surgery for hippocampal sclerosis. Neuroimage Clin, 2014, 27(7): 122-131.
[24]
Vivash L, Gregoire MC, Lau EW, et al. 18F-Flumazenil: a γ-aminobutyric acid a-specific PET radiotracer for the localization of drug-resistant temporal lobe epilepsy. J Nucl Med, 2013, 54(8): 1270-1277.
[25]
Wey HY, Catana C, Hooker JM, et al. Simultaneous fMRI-PET of the opioi- dergic pain system in human brain. Neuroimage, 2014, 102(Pt 2): 275-282.
[26]
Gutte H, Hansen AE, Larsen MM, et al. Simultaneous hyperpolarized 13C-pyruvate MRI and 18F-FDG PET (HyperPET) in 10 dogs with cancer. J Nucl Med, 2015, 56(11): 1786-1792.
[27]
Keshari KR, Wilson DM, Van Criekinge M, et al. Metabolic response of prostate cancer to nicotinamide phophoribosyltransferase inhibition in a hyperpolarized MR/PET compatible bioreactor. Prostate, 2015, 75(14): 1601-1609.

PREV Limitations of posterior reversible encephalopathy syndrome in the left frontal lobe and related literature learning
NEXT Research progress of multi-modal magnetic resonance imaging in postherpetic neuralgia
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn