分享:
分享到微信朋友圈
X
综述
磁共振弹性成像在慢性肝脏疾病中的应用进展
蒋卓儒 张海龙 朱正阳 张鑫 张冰 李婕 陈俊

Cite this article as: JIANG Z R, ZHANG H L, ZHU Z Y, et al. Advancements and applications of magnetic resonance elastography in chronic liver diseases[J]. Chin J Magn Reson Imaging, 2025, 16(3): 190-195.本文引用格式:蒋卓儒, 张海龙, 朱正阳, 等. 磁共振弹性成像在慢性肝脏疾病中的应用进展[J]. 磁共振成像, 2025, 16(3): 190-195. DOI:10.12015/issn.1674-8034.2025.03.032.


[摘要] 慢性肝脏疾病在全球范围内具有较高的患病率,常进展为肝纤维化或肝硬化,导致肝衰竭及肝癌等严重并发症。肝纤维化的早期诊断与分期对慢性肝病的诊疗至关重要。近年来,磁共振弹性成像(magnetic resonance elastography, MRE)因其无创性和高准确性,已成为肝纤维化评估的重要工具。随着MRE技术的不断更新与发展,其在慢性肝病肝纤维化评估中的应用范围显著扩大。最初,MRE主要应用于病毒性肝炎和代谢相关脂肪性肝病等常见病因的肝纤维化评估,但随着技术的进步和临床需求的增加,MRE逐渐被应用于酒精性肝病及自身免疫性肝病等多种病因的肝纤维化评估。此外,MRE在评估肝炎及肝纤维化进展、监测治疗效果以及预测临床结局方面的应用也得到了广泛研究。这些进展不仅丰富了MRE的临床应用场景,还为不同病因慢性肝病的个体化诊疗提供了重要的影像学支持。本文基于慢性肝病的不同病因及常见并发症,综述MRE在慢性肝病评估中的最新进展,以期为其临床管理提供参考依据。
[Abstract] Chronic liver disease exhibits a high prevalence worldwide and often progresses to liver fibrosis or cirrhosis, leading to severe complications such as liver failure and hepatocellular carcinoma. Early diagnosis and staging of liver fibrosis are crucial for the management of chronic liver disease. In recent years, magnetic resonance elastography (MRE) has emerged as a vital tool for liver fibrosis assessment due to its non-invasive nature and high accuracy. With continuous advancements in MRE technology, its application in evaluating liver fibrosis in chronic liver disease has significantly expanded. Initially, MRE was primarily used for liver fibrosis assessment in common etiologies such as viral hepatitis and metabolic dysfunction-associated fatty liver disease. However, with technological progress and increasing clinical demand, MRE has gradually been applied to a broader range of etiologies, including alcohol related-liver disease and autoimmune liver diseases. Furthermore, the application of MRE in assessing the progression of hepatitis and liver fibrosis, monitoring treatment efficacy, and predicting clinical outcomes has been extensively studied. These advancements have not only expanded the clinical utility of MRE but also provided essential imaging support for the individualized management of chronic liver diseases with diverse etiologies. Based on the different etiologies and common complications of chronic liver disease, this review summarizes the latest progress in the use of MRE for the evaluation of chronic liver disease, aiming to offer valuable insights for its clinical management.
[关键词] 磁共振弹性成像;慢性肝脏疾病;肝纤维化;生物力学特性参数
[Keywords] magnetic resonance elastography;chronic liver diseases;liver fibrosis;mechanobiological properties

蒋卓儒 1, 2   张海龙 2   朱正阳 2   张鑫 2   张冰 2   李婕 1*   陈俊 2, 3, 4  

1 南京大学医学院附属鼓楼医院感染性疾病科,南京 210003

2 南京大学医学院附属鼓楼医院医学影像科,南京 210003

3 梅奥医学中心放射科,明尼苏达州罗切斯特 55905,美国

4 锐声公司,明尼苏达州罗切斯特 55905,美国

通信作者:李婕,E-mail: lijier@nju.edu.cn

作者贡献声明:李婕设计本研究的方案,对稿件重要内容进行了修改;蒋卓儒起草和撰写稿件,获取、分析和解释本研究的数据;张海龙、朱正阳、张鑫、陈俊、张冰获取、分析或解释本研究的文献,对稿件重要内容进行了修改;李婕获得了国家科技重大专项、国家自然科学基金项目、国家自然科学基金NSFC-RGC青年学者论坛项目、江苏省自然科学基金项目的资助;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 国家科技重大专项 2023ZD0508802 国家自然科学基金项目 82170609,81970545 国家自然科学基金NSFC-RGC青年学者论坛项目 82411560273 江苏省自然科学基金项目 BK20231118
收稿日期:2024-10-10
接受日期:2025-03-10
中图分类号:R445.2  R575  R735.7 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2025.03.032
本文引用格式:蒋卓儒, 张海龙, 朱正阳, 等. 磁共振弹性成像在慢性肝脏疾病中的应用进展[J]. 磁共振成像, 2025, 16(3): 190-195. DOI:10.12015/issn.1674-8034.2025.03.032.

0 引言

       慢性肝脏疾病是全球范围内的重大健康问题,其常见病因包括病毒性肝炎、酒精性肝病、代谢相关脂肪性肝病(metabolic dysfunction-associated fatty liver disease, MAFLD)和自身免疫性肝病(autoimmune liver disease, AILD)等。肝细胞受损、炎症反应及反复修复过程会导致肝脏纤维组织异常增生,最终发展为肝硬化。肝纤维化作为慢性肝脏疾病的早期病理变化,其准确评估对临床决策和预后判断具有重要意义[1]

       目前临床上肝脏纤维化分期及炎症诊断主要依赖肝活检,但由于其有创性,患者接受度低。无创的定量成像方法包括基于超声的瞬时弹性成像(transient elastography, TE)、振动控制瞬时弹性成像(vibration-controlled transient elastography, VCTE)、点剪切波弹性成像(point shear wave elastography, pSWE)、二维剪切波弹性成像(2-dimensional shear wave elastography, 2DSWE)以及基于磁共振的磁共振弹性成像(magnetic resonance elastography, MRE)[2]。研究发现,以上技术在诊断肝显著纤维化、晚期纤维化和肝硬化方面的受试者工作特征(receiver operating characteristic, ROC)曲线标准化曲线下面积(summary area under the curve, sAUC)分别为:VCTE(0.83、0.85、0.89)、MRE(0.91、0.92、0.90)、pSWE(0.86、0.89、0.90)和2DSWE(0.75、0.72、0.88)[3]。HSU等[4]证明MRE检测各个纤维化阶段的ROC曲线下面积(area under the curve, AUC)均高于TE(P<0.05),凸显了MRE在纤维化分期中的优越性。此外,多项研究发现,MRE在区分肝炎与肝纤维化、肝纤维化筛查及分级中具有良好的可重复性和较高的诊断准确性[5, 6]。特别是在慢性肝病炎症与纤维化并存的情况下,MRE能够同时实现纤维化和炎症的检测,为临床提供了更全面的评估手段[7, 8]

       目前,MRE技术在肝脏中的应用主要集中在肝脏纤维化的诊断,但慢性肝病包括多种病因,疾病进展包括肝纤维化、肝炎甚至门静脉高压(portal hypertension, PH)与肝细胞癌(hepatocellular carcinoma, HCC),但尚未有文献系统性地阐明MRE在不同病因及并发症中的效能。因此,本文将系统探讨MRE在不同病因慢性肝脏疾病背景下对肝脏纤维化及肝炎的诊断效能,并进一步分析其在慢性肝病常见并发症中的应用价值。通过全面梳理MRE的临床应用进展,旨在明确其在慢性肝病管理中的重要作用,为临床诊断和治疗策略的优化提供科学依据和参考。

1 MRE的基本原理和技术发展

       MRE是一种利用磁共振成像(magnetic resonance imaging, MRI)和低频振动来测量软组织弹性的无创成像技术[9]。MRE的原理是通过外部驱动器向组织施加周期性的机械激励,产生剪切波,然后通过特殊的MRI序列采集剪切波在组织内的传播情况,最后通过反演算法重建组织的弹性参数。MRE包括三个步骤:(1)通过一个外部驱动器在组织表面施加一个周期性的机械振动,产生低频剪切波(20~200 Hz);(2)通过特殊的磁共振序列采集组织在不同时间点的图像,利用相位差法计算出组织的位移场;(3)通过反演算法,根据组织的位移场和物理模型计算出组织的生物力学特性参数,如硬度(stiffness)、储能模量(storage modulus)和耗散模量(loss modulus),并生成相应的力学特性图像。对于肝病患者来说,MRE的技术具有无创性、定量性、全覆盖性和多参数性的特点。

       近年来MRE序列取得了显著创新进展。常规应用的2D MRE可用于评估复数剪切模量(即硬度)的大小。而三维矢量(three dimensional vector, 3D vector)MRE的发展,使研究人员能够评估小型器官的生物力学特性。3D vector MRE考虑到波在各个方向上的传播特点,进而可以更精准地分析小型器官内部复杂的力学信息[10]。此外,由于呼吸运动可能不利于腹部MRE的定量准确性,VAN等[11]突破性地开发了自由呼吸运动校正的腹部MRE,在不影响患者舒适度的情况下解决了呼吸运动带来的图片伪影。研究人员进一步提出了虚拟MRE(virtual MRE, vMRE)技术[12]。vMRE借助弥散加权成像(diffusion-weighted imaging, DWI)所产生的虚拟剪切模量(µDiff),生成虚拟DWI弹性成像图,从而实现对肝脏硬度的定量评估。这一创新性的技术具有重要的临床应用价值,可应用于术前肝癌复发情况的预测,以及慢性乙型肝炎患者肝纤维化的分期评估[13, 14]

2 MRE在慢性肝脏疾病中的应用

2.1 慢性病毒性肝炎

       我国约有一亿乙肝患者,随着MRE技术传入国内,针对乙肝相关肝纤维化的研究日益增多[8]。MRE先前已被证明在慢性丙型肝炎病毒(hepatitis C virus, HCV)感染的高加索人群中具有良好的纤维化分级诊断性能。LI等[15]在未经治疗的乙肝患者中评估了TE、2DSWE和MRE的诊断性能。当阈值为2.47~4.07 kPa和3.46~6.87 kPa时,MRE对显著肝纤维化和肝硬化分期诊断的AUC均达到了0.99。并且,相较于成本更低更便捷的血清学检查,MRE在诊断准确性上具有极大的优势,不仅可用于肝纤维化分级,也可用于预测乙肝相关肝癌[16]。GARTEISER等[17]认为,病毒性肝炎患者的肝脏硬度增加是由于急性炎症发作,不能认为是纤维化分期升高。进一步研究表明,与单频硬度测量相比,多频频散系数能更好地区分炎症与纤维化。

2.2 MAFLD

       根据相关研究,2022年我国约30%的成年人患有MAFLD。若无法实现早期发现与干预,约20%~25%的患者会发展为代谢相关脂肪性肝炎(metabolic dysfunction-associated steatohepatitis, MASH),并且肝脏纤维化及肝癌的发生比率将显著上升。动物实验与人体研究均为MRE的有效性提供了证据。在MAFLD肝脏纤维化发生之前,MRE就能检测到炎症[18]。进一步研究发现,相较于单纯脂肪变性患者,仅有炎症而无纤维化的MAFLD患者肝脏硬度更大,但其平均硬度低于纤维化患者[19]。在临床试验与实际医疗实践中,准确识别NASH患者,并及时对符合条件的患者实施干预措施,具有重要意义。通过肝脏硬度和阻尼比测量所获取的频率依赖性信息,能够反映肝脏炎症情况。联合MRE生物标志物与血液学指标构建的无创评分系统,在MASH预测方面展现出卓越性能[20, 21, 22]。此外,3D MRE可通过代谢相关脂肪性肝炎活动度评分预测疾病严重程度,可应用于有MASH风险的肥胖人群,用于MASH的诊断及疾病严重程度评估[23]

       MRE在MAFLD患者肝纤维化分期中发挥巨大作用。LIANG等[24]荟萃分析了包括798名MAFLD患者的8个独立队列。MRE检测显著肝纤维化的AUC为0.92(敏感度为79%;特异度为89%),检测晚期纤维化的AUC为0.92(敏感度为87%;特异度为88%),检测肝硬化的AUC为0.94(敏感度为88%,特异度为89%);该研究明确界定了针对肝纤维化F2、F3和F4阶段的MRE诊断阈值,分别为3.14 kPa、3.53 kPa和4.45 kPa;同时,研究指出身体质量指数(body mass index, BMI)和肝脏脂肪含量不会对MRE的诊断准确性造成影响;γ-谷氨酰转移酶水平以及炎症活动程度是影响MRE诊断阈值的混杂因素。另有研究者荟萃分析了涉及910名MAFLD患者的12项研究,阈值定义:1.77~5.02 kPa为轻度肝纤维化,2.38~5.37 kPa为显著肝纤维化,2.43~5.97 kPa为晚期肝纤维化,2.74~6.7 kPa为肝硬化;并且发现MRE诊断肝硬化的准确性最高,敏感度为94%,特异度为95%[25]

       炎症和纤维化并存时,MRE被证实是识别MASH以及实质性纤维化患者最为准确的检测手段[26]。KHALFALLAH等[27]发现MRE的黏弹性参数在诊断进展型MAFLD(包括MASH和实质性纤维化)时表现不同。其中,存储模量和损耗模量在诊断MASH方面具有相近的中等准确度,AUC分别为0.67和0.66;而在大量纤维化的诊断中,存储模量的AUC为0.73,损耗模量的AUC达到0.81,在诊断大量纤维化方面损耗模量表现优于对NASH的诊断;当将MRE结果与肝活检结果对比时,针对晚期纤维化诊断的最佳临界值确定为4.15 kPa。因此,MRE不仅可广泛用于监测MASH的疾病进展,甚至还能用于评估抗肝脂肪变性和抗肝纤维化药物的治疗效果[28, 29]。在MAFLD的风险分层实践中,虽然不同临床中心所采用的MRE临界值存在一定程度的差异[30],但现有研究高度一致认可MRE在诊断MAFLD相关纤维化及炎症方面的准确性。

       MRE在肝脏纤维化诊断领域的优势不仅体现在其诊断的准确性,还在于其具备良好的重复性。这一优势恰好能够弥补肝穿刺活检的取材不确定性及读片缺乏客观性等不足,为肝脏纤维化的精准诊断提供了更为可靠的技术手段。一项涵盖三个中心的回顾性研究发现,肝脏硬度的异质性导致肝活检所诊断的肝纤维化情况与MRE的诊断结果不一致[31]。在单个中心内,研究人员安排参与者在间隔7天内的两次就诊过程中,接受多达7次的MRI检查。此次研究运用了来自三家供应商的6台MRI扫描仪,并实施标准化成像协议,同时采用1.5 T和3 T的MRE测量肝脏硬度,验证了参与者肝脏脂肪、纤维化以及身体成分的MRI生物标志物的可重复性[32]。此外,TANG等[33]针对两个中心的分析师以及手动、自动分析方法展开比较,最终确定MRE能够在不同中心,通过自动分析以较高的可重复性和纤维化分类准确性来实现对肝脏硬度的测量。

2.3 ALD

       尽管MAFLD和ALD的主要区别在于是否存在大量饮酒史,但两者的组织学特征高度相似,均表现为脂肪变性、炎症和纤维化等病理改变[34]。与MAFLD肝脏结局的研究结论一致,基于MRE的连续肝脏硬度评估能够作为ALD患者肝硬化或失代偿独立且显著的预测指标[35]

2.4 AILD

       AILD包括原发性硬化性胆管炎(primary sclerosing cholangitis, PSC)、自身免疫性肝炎(autoimmune hepatitis, AIH)和自身免疫性硬化性胆管炎(autoimmune sclerosing cholangitis, ASC),是一种并不常见的慢性肝病,最终会进展为肝纤维化。研究显示,AILD患者肝脏硬度测量值显著升高,并且在PSC/ASC与AIH患者亚组间未观察到明显差异[36, 37]

       综上所述,MRE在肝纤维化与肝炎的评估和识别中有良好的准确性和重复性。研究表明胆汁淤积、γ-谷氨酰转移酶水平以及炎症活动程度可能对MRE的诊断阈值产生影响。然而,目前对于影响MRE的其他混杂因素,以及这些因素升高至何种程度会对MRE阈值造成影响,尚未有明确的定论。未来的研究有必要深入探究这些问题,明确当这些因素改变到何种具体数值时,MRE的检测结果可信度降低,并建立相应的转换方程,以进一步提高MRE在临床诊断中的准确性和可靠性,为肝脏疾病的精准诊断和治疗提供更为坚实的科学依据。

3 MRE在慢性肝脏疾病常见并发症中的应用

3.1 PH

       PH指门静脉压力异常升高,其中90%的病例由肝硬化导致,称为肝硬化性门静脉高压(cirrhotic PH, CPH),另外10%归为非肝硬化性门静脉高压(noncirrhotic PH, NCPH)[38]。在CPH小鼠中,双参数肝脏MRE在预测门静脉压力方面展现出极高的诊断准确性(AUC>0.9)[39]。KENNEDY等[40]针对36名肝病患者开展研究,旨在评估2D/3D MRE以及SWE诊断CPH的效能。研究结果表明,在各类检测指标与方法中,3D MRE在诊断临床显著性CPH中性能最为突出(AUC=0.911)。更有研究认为,MRE测得的肝脏与脾脏硬度,可作为检测具有临床意义PH的补充性无创评估工具。而在检测PH方面,脾脏硬度可能比肝脏硬度更具特异性与准确性[41, 42]。MRE在区分CPH和NCPH中也表现良好。NAVIN等[43]利用MRE研究发现,与CPH相比,NCPH患者的肝脏硬度测量值更低,而脾脏硬度测量值与肝脏硬度测量值的比值更高。若肝脏硬度测量值≤4.7 kPa,可有效排除CPH。

       综上所述,MRE能够通过对肝脏硬度和脾脏硬度的测量,实现对门静脉高压的有效评估,并且可显著区分不同病因所致的PH。然而,性别与体质量对MRE测得的脾脏硬度值的影响目前尚未明确,仍有待开展针对门静脉高压的大规模研究,以建立基于不同性别和体质量的MRE阈值,为临床诊断与治疗提供更精准的依据。

3.2 HCC

       对于HCC,目前临床至关重要的是预防复发及并发症[44, 45, 46]。已有研究发现,肿瘤硬度与微血管浸润(microvascular invasion, MVI)的发生、经动脉化疗栓塞治疗及免疫治疗的疗效,以及肿瘤复发相关[47]。更进一步发现,肿瘤硬度反映了HCC的肿瘤—间质比,并与肿瘤浸润淋巴细胞相关,且瘤周硬度可作为肿瘤内免疫微环境的影像学生物标志物[48, 49]。在针对术前和术后模型所开展的多变量分析中发现,肝脏硬度[风险比(HR)=1.757;P<0.001]是晚期复发的唯一独立预测因子,具有高特异度(90.0%)。当肝脏硬度最佳临界值设定为3.62 kPa时,AUC为0.860[50]。WANG等[51]发现与未复发的HCC相比,复发的HCC具有更高的肿瘤硬度。肿瘤硬度每增加1 kPa,肿瘤复发风险增加16.3%。同时他们也发现,MVI也是肝切除术后HCC复发或预后不良的重要独立预测因素。ZHANG等[52]对MVI进行了深入的研究,在185例患者中证实肿瘤最大直径≥50 mm(P=0.031)、肿瘤硬度/肝硬度>1.47(P=0.001)、肿瘤硬度>4.33 kPa(P<0.001)和肿瘤边缘不平滑(P=0.006)是MVI阳性的重要独立预测因子。LI等[53]对59例经组织病理学证实的HCC患者进行了回顾性分析,结果显示,在多种测量条件下,30 Hz MRE在无创预测HCC患者是否存在MVI方面展现出了最高的敏感度;与临床放射学模型相结合时,MRE可以显著提高MVI等级的预测性能。

       综上,深入了解肿瘤硬度与肿瘤微环境(如细胞构成、肿瘤—间质比以及免疫微环境)之间的关系,借助MRE获取的信息,有望改善患者分层,并指导制订个性化治疗策略。目前的研究已更新至HCC肿瘤硬度与组织病理学之间的关系,但组织病理学检查部位与影像学分析部位尚未能精确匹配。因此,需要开展更多研究来验证影像学和组织病理学生物标志物的预后价值,特别是明确影像学标志物在HCC患者分层和治疗反应监测中的作用。

4 小结和展望

       MRE作为一种先进的成像技术,凭借无创、定量、高成功率以及高重复性等特性,在肝纤维化的诊断与治疗评估中彰显出重要价值。当MRE与血液学检查指标联合应用时,所构建的MRE评分系统在MAFLD肝脏纤维化及MASH的预测方面表现卓越,为肝脏疾病的早期诊断与病情监测提供了更为全面、精准的信息。然而,MRE在肝脏疾病的临床应用中仍面临着诸多挑战。目前,相关研究大多为小样本规模,这使得研究结果的代表性和普遍性受限,难以准确反映MRE在广大患者群体中的实际效能,进而影响其临床推广。MRE阈值的确定依赖于肝脏活检这一金标准,但MRE呈现的是全肝硬度的平均水平,无法像病理检查那样展现肝脏组织的细微病变,这可能导致MRE阈值的准确性受到影响。

       此外,临床常用的MRE序列对患者屏气要求极高,屏气不佳会使肝脏硬度测量值升高,干扰诊断准确性。尽管已有针对自由呼吸的MRE序列研究成果,但尚未得到广泛应用。为推动MRE在临床的进一步应用,需要持续改进技术和序列,开展大样本的临床研究,以更准确地评估其应用价值。同时,结合电子病理研究,针对肝脏不同叶段采用不同的精确阈值,有助于提高MRE诊断的特异性和敏感性。随着技术的不断进步,MRE在肝脏疾病领域的研究和应用有望取得更大突破,显著提升其临床推广的可能性,为肝脏疾病的诊疗带来新的契机。

[1]
GINÈS P, CASTERA L, LAMMERT F, et al. Population screening for liver fibrosis: toward early diagnosis and intervention for chronic liver diseases[J]. Hepatology, 2022, 75(1): 219-228. DOI: 10.1002/hep.32163.
[2]
ZHANG Y N, FOWLER K J, OZTURK A, et al. Liver fibrosis imaging: a clinical review of ultrasound and magnetic resonance elastography[J]. J Magn Reson Imaging, 2020, 51(1): 25-42. DOI: 10.1002/jmri.26716.
[3]
SELVARAJ E A, MÓZES F E, JAYASWAL A N A, et al. Diagnostic accuracy of elastography and magnetic resonance imaging in patients with NAFLD: A systematic review and meta-analysis[J]. J Hepatol, 2021, 75(4): 770-785. DOI: 10.1016/j.jhep.2021.04.044.
[4]
HSU C, CAUSSY C, IMAJO K, et al. Magnetic resonance vs transient elastography analysis of patients with nonalcoholic fatty liver disease: a systematic review and pooled analysis of individual participants[J]. Clin Gastroenterol Hepatol, 2019, 17(4): 630-637.e8. DOI: 10.1016/j.cgh.2018.05.059.
[5]
SIDDIQI H, HUANG D Q, MITTAL N, et al. Repeatability of vibration-controlled transient elastography versus magnetic resonance elastography in patients with cirrhosis: a prospective study[J]. Aliment Pharmacol Ther, 2024, 60(4): 484-491. DOI: 10.1111/apt.18118.
[6]
DUMAN S, KURU D, GUMUSSOY M, et al. A combination of non-invasive tests for the detection of significant fibrosis in patients with metabolic dysfunction-associated steatotic liver disease is not superior to magnetic resonance elastography alone[J]. Eur Radiol, 2024, 34(6): 3882-3888. DOI: 10.1007/s00330-023-10441-5.
[7]
SHI Y, QI Y F, LAN G Y, et al. Three-dimensional MR elastography depicts liver inflammation, fibrosis, and portal hypertension in chronic hepatitis B or C[J]. Radiology, 2021, 301(1): 154-162. DOI: 10.1148/radiol.2021202804.
[8]
WANG Y K, ZHOU J H, LIN H M, et al. Viscoelastic parameters derived from multifrequency MR elastography for depicting hepatic fibrosis and inflammation in chronic viral hepatitis[J/OL]. Insights Imaging, 2024, 15(1): 91 [2025-03-06]. https://pubmed.ncbi.nlm.nih.gov/38530543/. DOI: 10.1186/s13244-024-01652-5.
[9]
ZERUNIAN M, MASCI B, CARUSO D, et al. Liver magnetic resonance elastography: focus on methodology, technique, and feasibility[J/OL]. Diagnostics, 2024, 14(4): 379 [2025-03-06]. https://pubmed.ncbi.nlm.nih.gov/38396418/. DOI: 10.3390/diagnostics14040379.
[10]
ATAMANIUK V, HAŃCZYK Ł, CHEN J, et al. 3D vector MR elastography applications in small organs[J]. Magn Reson Imaging, 2024, 112: 54-62. DOI: 10.1016/j.mri.2024.06.005.
[11]
VAN SCHELT A S, WASSENAAR N P M, RUNGE J H, et al. Free-breathing motion corrected magnetic resonance elastography of the abdomen[J]. Quant Imaging Med Surg, 2024, 14(5): 3447-3460. DOI: 10.21037/qims-23-1727.
[12]
YANG L, ZHOU G F, LIU L H, et al. Assessing liver fibrosis in chronic liver disease: Comparison of diffusion-weighted MR elastography and two-dimensional shear-wave elastography using histopathologic assessment as the reference standard[J/OL]. Ann Hepatol, 2024, 30(1): 101743 [2025-03-06]. https://pubmed.ncbi.nlm.nih.gov/39662592/. DOI: 10.1016/j.aohep.2024.101743.
[13]
CHEN J J, SUN W, WANG W T, et al. Diffusion-based virtual MR elastography for predicting recurrence of solitary hepatocellular carcinoma after hepatectomy[J/OL]. Cancer Imaging, 2024, 24(1): 106 [2025-03-06]. https://pubmed.ncbi.nlm.nih.gov/39138500/. DOI: 10.1186/s40644-024-00759-8.
[14]
YANG L, ZHOU G, LIU L, et al. Staging chronic hepatitis B related liver fibrosis with diffusion-weighted MRI-based virtual elastography: comparisons with serum fibrosis indexes[J/OL]. Clin Radiol, 2025, 80: 106750 [2025-03-06]. https://pubmed.ncbi.nlm.nih.gov/39657563/. DOI: 10.1016/j.crad.2024.106750.
[15]
LI M K, WAN S Z, WU X Y, et al. Diagnostic performance of elastography on liver fibrosis in antiviral treatment-naive chronic hepatitis B patients: a meta-analysis[J/OL]. Gastroenterol Rep, 2022, 10(1): goac005 [2025-03-06]. https://pubmed.ncbi.nlm.nih.gov/35186298/. DOI: 10.1093/gastro/goac005.
[16]
TAMAKI N, HIGUCHI M, KEITOKU T, et al. Magnetic resonance elastography for the prediction of hepatocellular carcinoma in chronic hepatitis B[J/OL]. JGH Open, 2024, 8(4): e13067 [2025-03-06]. https://pubmed.ncbi.nlm.nih.gov/38665298/. DOI: 10.1002/jgh3.13067.
[17]
GARTEISER P, PAGÉ G, D'ASSIGNIES G, et al. Necro-inflammatory activity grading in chronic viral hepatitis with three-dimensional multifrequency MR elastography[J/OL]. Sci Rep, 2021, 11(1): 19386 [2025-03-06]. https://pubmed.ncbi.nlm.nih.gov/34588519/. DOI: 10.1038/s41598-021-98726-x.
[18]
QU Y L, MIDDLETON M S, LOOMBA R, et al. Magnetic resonance elastography biomarkers for detection of histologic alterations in nonalcoholic fatty liver disease in the absence of fibrosis[J]. Eur Radiol, 2021, 31(11): 8408-8419. DOI: 10.1007/s00330-021-07988-6.
[19]
WEI X D, QI S, WEI X H, et al. Inflammation activity affects liver stiffness measurement by magnetic resonance elastography in MASLD[J]. Dig Liver Dis, 2024, 56(10): 1715-1720. DOI: 10.1016/j.dld.2024.04.031.
[20]
IMAJO K, SAIGUSA Y, KOBAYASHI T, et al. Head-to-head comparison among FAST, MAST, and multiparametric MRI-based new score in diagnosing at-risk MASH[J/OL]. Eur Radiol, 2024 [2025-03-06]. https://pubmed.ncbi.nlm.nih.gov/39638942/. DOI: 10.1007/s00330-024-11215-3.
[21]
IMAJO K, SAIGUSA Y, KOBAYASHI T, et al. M-PAST score is better than MAST score for the diagnosis of active fibrotic nonalcoholic steatohepatitis[J]. Hepatol Res, 2023, 53(9): 844-856. DOI: 10.1111/hepr.13927.
[22]
NOUREDDIN N, AJMERA V, BERGSTROM J, et al. MEFIB-Index and MAST-Score in the assessment of hepatic decompensation in metabolic dysfunction-associated steatosis liver disease-Individual participant data meta-analyses[J]. Aliment Pharmacol Ther, 2023, 58(9): 856-865. DOI: 10.1111/apt.17707.
[23]
ALLEN A M, SHAH V H, THERNEAU T M, et al. The role of three-dimensional magnetic resonance elastography in the diagnosis of nonalcoholic steatohepatitis in obese patients undergoing bariatric surgery[J]. Hepatology, 2020, 71(2): 510-521. DOI: 10.1002/hep.30483.
[24]
LIANG J X, AMPUERO J, NIU H, et al. An individual patient data meta-analysis to determine cut-offs for and confounders of NAFLD-fibrosis staging with magnetic resonance elastography[J]. J Hepatol, 2023, 79(3): 592-604. DOI: 10.1016/j.jhep.2023.04.025.
[25]
LIANG Y Z, LI D W. Magnetic resonance elastography in staging liver fibrosis in non-alcoholic fatty liver disease: a pooled analysis of the diagnostic accuracy[J/OL]. BMC Gastroenterol, 2020, 20(1): 89 [2025-03-06]. https://pubmed.ncbi.nlm.nih.gov/32252641/. DOI: 10.1186/s12876-020-01234-x.
[26]
LI J H, LU X, ZHU Z, et al. Head-to-head comparison of magnetic resonance elastography-based liver stiffness, fat fraction, and T1 relaxation time in identifying at-risk NASH[J]. Hepatology, 2023, 78(4): 1200-1208. DOI: 10.1097/HEP.0000000000000417.
[27]
KHALFALLAH M, DOBLAS S, HAMMOUTENE A, et al. Visco-elastic parameters at three-dimensional MR elastography for diagnosing non-alcoholic steatohepatitis and substantial fibrosis in mice[J]. J Magn Reson Imaging, 2024, 59(1): 97-107. DOI: 10.1002/jmri.28765.
[28]
TANG H Y, LI J H, ZINKER B, et al. Evaluation of a PEGylated fibroblast growth factor 21 variant using novel preclinical magnetic resonance imaging and magnetic resonance elastography in a mouse model of nonalcoholic steatohepatitis[J]. J Magn Reson Imaging, 2022, 56(3): 712-724. DOI: 10.1002/jmri.28077.
[29]
BROWN E A, MINNICH A, SANYAL A J, et al. Effect of pegbelfermin on NASH and fibrosis-related biomarkers and correlation with histological response in the FALCON 1 trial[J/OL]. JHEP Rep, 2023, 5(4): 100661 [2025-03-06]. https://pubmed.ncbi.nlm.nih.gov/36866389/. DOI: 10.1016/j.jhepr.2022.100661.
[30]
LAZARUS J V, CASTERA L, MARK H E, et al. Real-world evidence on non-invasive tests and associated cut-offs used to assess fibrosis in routine clinical practice[J/OL]. JHEP Rep, 2022, 5(1): 100596 [2025-03-06]. https://pubmed.ncbi.nlm.nih.gov/36644239/. DOI: 10.1016/j.jhepr.2022.100596.
[31]
KAWAMURA N, IMAJO K, KALUTKIEWICZ K J, et al. Influence of liver stiffness heterogeneity on staging fibrosis in patients with nonalcoholic fatty liver disease[J]. Hepatology, 2022, 76(1): 186-195. DOI: 10.1002/hep.32302.
[32]
FOWLER K J, VENKATESH S K, OBUCHOWSKI N, et al. Repeatability of MRI biomarkers in nonalcoholic fatty liver disease: the NIMBLE consortium[J/OL]. Radiology, 2023, 309(1): e231092 [2025-03-06]. https://pubmed.ncbi.nlm.nih.gov/37815451/. DOI: 10.1148/radiol.231092.
[33]
TANG A, DZYUBAK B, YIN M, et al. MR elastography in nonalcoholic fatty liver disease: inter-center and inter-analysis-method measurement reproducibility and accuracy at 3T[J]. Eur Radiol, 2022, 32(5): 2937-2948. DOI: 10.1007/s00330-021-08381-z.
[34]
OH J H, AHN S B, CHO S, et al. Diagnostic performance of non-invasive tests in patients with MetALD in a health check-up cohort[J]. J Hepatol, 2024, 81(5): 772-780. DOI: 10.1016/j.jhep.2024.05.042.
[35]
CHEN J B, XU P, KALUTKIEWICZ K, et al. Liver stiffness measurement by magnetic resonance elastography predicts cirrhosis and decompensation in alcohol-related liver disease[J]. Abdom Radiol, 2024, 49(7): 2231-2241. DOI: 10.1007/s00261-024-04479-2.
[36]
MESROPYAN N, KUPCZYK P, DOLD L, et al. Non-invasive assessment of liver fibrosis in autoimmune hepatitis: Diagnostic value of liver magnetic resonance parametric mapping including extracellular volume fraction[J]. Abdom Radiol, 2021, 46(6): 2458-2466. DOI: 10.1007/s00261-020-02822-x.
[37]
DILLMAN J R, TROUT A T, TAYLOR A E, et al. Association between MR elastography liver stiffness and histologic liver fibrosis in children and young adults with autoimmune liver disease[J/OL]. AJR Am J Roentgenol, 2024, 223(1): e2431108 [2025-03-06]. https://pubmed.ncbi.nlm.nih.gov/38630086/. DOI: 10.2214/AJR.24.31108.
[38]
BAÑARES J, ACEITUNO L, PONS M, et al. Noninvasive assessment of portal hypertension[J]. Clin Liver Dis, 2024, 28(3): 401-415. DOI: 10.1016/j.cld.2024.03.010.
[39]
LI J H, SEHRAWAT T S, CHEN J B, et al. Quantitative assessment of portal hypertension with bi-parametric dual-frequency hepatic MR elastography in mouse models[J]. Eur Radiol, 2021, 31(4): 2303-2311. DOI: 10.1007/s00330-020-07341-3.
[40]
KENNEDY P, STOCKER D, CARBONELL G, et al. MR elastography outperforms shear wave elastography for the diagnosis of clinically significant portal hypertension[J]. Eur Radiol, 2022, 32(12): 8339-8349. DOI: 10.1007/s00330-022-08935-9.
[41]
SINGH R, WILSON M P, KATLARIWALA P, et al. Accuracy of liver and spleen stiffness on magnetic resonance elastography for detecting portal hypertension: a systematic review and meta-analysis[J]. Eur J Gastroenterol Hepatol, 2021, 32(2): 237-245. DOI: 10.1097/MEG.0000000000001724.
[42]
SERAI S D, GLENN A, TROUT A T, et al. Spleen stiffness in a healthy pediatric population undergoing liver magnetic resonance elastography[J/OL]. Pediatr Radiol, 2025 [2025-03-06]. https://pubmed.ncbi.nlm.nih.gov/39841253/. DOI: 10.1007/s00247-024-06107-z.
[43]
NAVIN P J, GIDENER T, ALLEN A M, et al. The role of magnetic resonance elastography in the diagnosis of noncirrhotic portal hypertension[J]. Clin Gastroenterol Hepatol, 2020, 18(13): 3051-3053.e2 [2025-03-06]. https://pubmed.ncbi.nlm.nih.gov/31629882/. DOI: 10.1016/j.cgh.2019.10.018.
[44]
LEE J H, HWANG J A, GU K, et al. Magnetic resonance elastography as a preoperative assessment for predicting intrahepatic recurrence in patients with hepatocellular carcinoma[J]. Magn Reson Imaging, 2024, 109: 127-133. DOI: 10.1016/j.mri.2024.03.014.
[45]
LIU G X, SHEN Z H, CHONG H H, et al. Three-dimensional multifrequency MR elastography for microvascular invasion and prognosis assessment in hepatocellular carcinoma[J]. J Magn Reson Imaging, 2024, 60(6): 2626-2640. DOI: 10.1002/jmri.29276.
[46]
LIU G X, MA D, WANG H F, et al. Three-dimensional multifrequency magnetic resonance elastography improves preoperative assessment of proliferative hepatocellular carcinoma[J/OL]. Insights Imaging, 2023, 14(1): 89 [2025-03-06]. https://pubmed.ncbi.nlm.nih.gov/37198348/. DOI: 10.1186/s13244-023-01427-4.
[47]
ZHONG L H, LONG S C, PEI Y G, et al. MRI tomoelastography to assess the combined status of vessels encapsulating tumor clusters and microvascular invasion in hepatocellular carcinoma[J/OL]. J Magn Reson Imaging, 2024 [2025-03-06]. https://pubmed.ncbi.nlm.nih.gov/39506537/. DOI: 10.1002/jmri.29654.
[48]
CHEN J, WU Z R, ZHANG Z, et al. Apparent diffusion coefficient and tissue stiffness are associated with different tumor microenvironment features of hepatocellular carcinoma[J]. Eur Radiol, 2024, 34(11): 6980-6991. DOI: 10.1007/s00330-024-10743-2.
[49]
ABE H, SHIBUTANI K, YAMAZAKI S, et al. Tumor stiffness measurement using magnetic resonance elastography can predict recurrence and survival after curative resection of hepatocellular carcinoma[J]. Surgery, 2023, 173(2): 450-456. DOI: 10.1016/j.surg.2022.11.001.
[50]
ZHANG L N, CHEN J B, JIANG H, et al. MR elastography as a biomarker for prediction of early and late recurrence in HBV-related hepatocellular carcinoma patients before hepatectomy[J/OL]. Eur J Radiol, 2022, 152: 110340 [2025-03-06]. https://pubmed.ncbi.nlm.nih.gov/39506537/. DOI: 10.1016/j.ejrad.2022.110340.
[51]
WANG J, SHAN Q G, LIU Y, et al. 3D MR elastography of hepatocellular carcinomas as a potential biomarker for predicting tumor recurrence[J]. J Magn Reson Imaging, 2019, 49(3): 719-730. DOI: 10.1002/jmri.26250.
[52]
ZHANG L N, LI M S, ZHU J, et al. The value of quantitative MR elastography-based stiffness for assessing the microvascular invasion grade in hepatocellular carcinoma[J]. Eur Radiol, 2023, 33(6): 4103-4114. DOI: 10.1007/s00330-022-09290-5.
[53]
LI M S, YIN Z Y, HU B, et al. MR elastography-based shear strain mapping for assessment of microvascular invasion in hepatocellular carcinoma[J]. Eur Radiol, 2022, 32(7): 5024-5032. DOI: 10.1007/s00330-022-08578-w.

上一篇 人工智能在乳腺癌磁共振诊断中的研究进展
下一篇 磁共振成像技术在肝纤维化分级诊断中的研究进展
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2