分享:
分享到微信朋友圈
X
特别关注
酰胺质子转移加权成像与扩散加权成像评价直肠癌肿瘤出芽等级的价值
杜云霞 徐文翔 何雨琪 孙赟 李飞翔 蔡玮 黄刚

Cite this article as: DU Y X, XU W X, HE Y Q, et al. Amide proton transfer weighted and diffusion-weighted imaging in evaluating rectal cancer tumor budding grade value[J]. Chin J Magn Reson Imaging, 2025, 16(1): 42-47, 73.本文引用格式:杜云霞, 徐文翔, 何雨琪, 等. 酰胺质子转移加权成像与扩散加权成像评价直肠癌肿瘤出芽等级的价值[J]. 磁共振成像, 2025, 16(1): 42-47, 73. DOI:10.12015/issn.1674-8034.2025.01.007.


[摘要] 目的 探讨酰胺质子转移加权(amide proton transfer weighted, APTw)成像与表观扩散系数(apparent diffusion coefficient, ADC)在评估直肠癌肿瘤出芽(tumor budding, TB)等级中的价值。材料与方法 回顾性分析了121例直肠癌患者的临床及影像资料,根据病理TB计数进行分组,分为中-低级别组和高级别组,对比两组间APT值及ADC值;采用组内相关系数(intra-class correlation coefficient, ICC)对观察者间所测数据的一致性进行检测。应用二元logistic回归整体输入法分析变量与直肠癌TB等级的相关性。采用受试者工作特征(receiver operating characteristic, ROC)曲线分析差异有统计学意义的参数以及其联合后的评估效能,计算曲线下面积(area under the curve, AUC)及其95%置信区间,以及对应的阈值、敏感度、特异度。采用DeLong检验比较各AUC的差异。采用Spearman相关性分析方法来分析各参数与TB的相关性。结果 121例直肠癌患者中中-低级别组69例,高级别组52例。2位医师测量的APT值及ADC值结果一致性良好(ICC分别为0.925、0.877)。中-低级别直肠癌TB组的APT值(2.068%±0.588%)低于高级别TB组(3.167%±0.592%)(P<0.001);中-低级别直肠癌TB组的ADC值[(1.064±0.131)×10-3 mm2/s]高于高级别TB组[(0.903±0.138)×10-3 mm2/s]。在多变量分析中,APT值[比值比:15.079(95% CI:4.822~47.154)]和ADC值[比值比:0.004(95% CI:0.001~0.228)]是预测TB等级的独立危险因素。APT、ADC及两者联合评估直肠癌TB等级的AUC分别为0.916、0.821、0.918。DeLong检验结果显示ADC值与APT值、两者联合后评估TB等级的AUC间差异有统计学意义(P=0.024、0.004)。决策曲线显示两者联合后较单独使用APT及ADC值具有更高的临床价值。APT值与TB等级呈中度正相关(r=0.713,P<0.001),ADC值与TB等级呈中度负相关(r=-0.550,P<0.001)。结论 APT和ADC值均能够术前有效评估直肠癌的TB等级,两者联合应用可提高诊断效能。
[Abstract] Objective To explore the value of amide proton transfer weighted (APTw) imaging with apparent diffusion coefficient (ADC) in the preoperative assessment of tumor budding (TB) grade in rectal cancer.Materials and Methods We retrospectively analyzed the clinical and imaging data of 121 patients with rectal cancer. Based on pathological tumor budding counts, the patients were categorized into intermediate-low-grade and high-grade groups. The APT and ADC values were compared between the two groups, and the correlation between APT and ADC values and TB grades was investigated. Intra-class correlation coefficients (ICC) were used to assess the consistency of data measured by the observer before and after evaluation. Binary logistic regression comprehensive input method was employed to analyze the association between variables and the grade of rectal cancer tumor budding. Receiver operating characteristic (ROC) curves were utilized to assess the statistical significance of parameters and their combined efficacy. The area under the curve (AUC) along with its 95% confidence interval, as well as corresponding thresholds, sensitivities, and specificities, were calculated. DeLong tests were conducted to compare the differences in AUC. Spearman correlation analysis was performed to investigate the relationship between each parameter and tumor budding.Results One hundred and twenty-one patients were enrolled, The distribution of TB grade was intermediate-low grade (n = 69) and high-grade (n = 52). The APT and ADC values measured by the two observers showed good consistency, with ICC values were 0.925, 0.877. The APT value for intermediate-low grade TB of rectal cancer was significantly lower (2.068% ± 0.588%) compared to high-grade TB (3.167% ± 0.592%) (P < 0.001). Additionally, the ADC value for intermediate-low grade rectal cancer TB [(1.064 ± 0.131) × 10-3 mm2/s] was higher than that of the high-grade TB group [(0.903 ± 0.138) × 10-3 mm2/s]. In multivariate analysis, APT value [OR: 15.079 (95% CI: 4.822 to 47.154)] and ADC value [OR: 0.004 (95% CI: 0.001 to 0.228)] were identified as independent risk factors for predicting TB grades. The areas under the curve (AUC) for APT, ADC, and their combined assessment of rectal cancer tumor budding grade were 0.916, 0.821, and 0.918, respectively. The DeLong test results showed statistically significant differences in AUCs between ADC and APT values, as well as their combined assessment of TB grade (P = 0.024, 0.004). The decision curve shows that the combination of the two has higher clinical value than using APT and ADC values alone. APT values exhibited a moderate positive correlation with TB grade (r = 0.713, P < 0.001), while ADC values demonstrated a moderate negative correlation with TB grade (r = -0.550, P < 0.001).Conclusions APT and ADC can effectively assess the TB grade of rectal cancer and have some clinical applications, and the combination of APT and ADC can significantly improve the diagnostic efficacy.
[关键词] 直肠癌;肿瘤出芽;磁共振成像;酰胺质子转移加权成像;表观扩散系数
[Keywords] rectal cancer;tumor budding;magnetic resonance imaging;amide proton transfer imaging;apparent diffusion coefficient

杜云霞 1   徐文翔 1   何雨琪 1   孙赟 1   李飞翔 1   蔡玮 2   黄刚 3*  

1 甘肃中医药大学第一临床医学院,兰州 730000

2 甘肃省人民医院病理科,兰州 730000

3 甘肃省人民医院放射科,兰州 730000

通信作者:黄刚,E-mail:huang_g2024@163.com

作者贡献声明:黄刚设计本研究的方案,对稿件重要内容进行了修改,获得了甘肃省自然科学基金项目资助;杜云霞起草和撰写稿件,获取、分析和解释本研究的数据;徐文翔、何雨琪、孙赟、李飞翔、蔡玮获取、分析或解释本研究的数据,对稿件重要的内容进行了修改;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 甘肃省自然科学基金 24JRRA1054
收稿日期:2024-10-18
接受日期:2025-01-10
中图分类号:R445.2  R735.37 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2025.01.007
本文引用格式:杜云霞, 徐文翔, 何雨琪, 等. 酰胺质子转移加权成像与扩散加权成像评价直肠癌肿瘤出芽等级的价值[J]. 磁共振成像, 2025, 16(1): 42-47, 73. DOI:10.12015/issn.1674-8034.2025.01.007.

0 引言

       2020年中国癌症统计报告显示我国结直肠癌的发病率在恶性肿瘤中位居第二、死亡率位居第五[1, 2],且直肠癌的发病率高于结肠癌[3]。直肠癌患者的预后与肿瘤状态、患者个体状态、治疗方式等有关[4, 5]。肿瘤出芽(tumor budding, TB)代表了肿瘤侵袭进展的动态过程[6],被认为是直肠癌的一个不良预后因素,它与较高的肿瘤分级、较低总生存期和无病生存期相关[7, 8, 9],同时也是局部晚期直肠癌制订辅助化疗方案的重要依据[10, 11, 12]。而目前TB的判定只能通过术后标本检测,尚无有效的术前检测方法评估TB等级,对于无法行手术治疗的直肠癌患者TB状态的评估受到了限制。

       MRI作为一种非侵入性的具有良好的软组织分辨率及多参数的成像技术,常用于直肠癌的诊断、分期及治疗反应的评估。然而,常规MRI图像主要提供直肠癌病变的定性诊断,而不能反映临床病理信息的定量指标,酰胺质子转移加权(amide proton transfer weighted, APTw)成像可无创无对比剂定量反应肿瘤中内源性移动的蛋白质和多肽[13, 14],扩散加权成像(diffusion-weighted imaging, DWI)生成的表观扩散系数(apparent diffusion coefficient, ADC)可量化组织内水分子扩散受限程度[15],两种技术在直肠癌的诊断、分级及预后评估方面均展示出巨大的潜能[16, 17, 18, 19],有助于无创评估病灶生物学特征并指导临床决策。但是,目前APTw技术在术前评估直肠癌TB等级方面的作用尚不清楚,且国内外尚未有研究联合APTw与DWI来评估直肠癌TB等级。故本研究拟联合使用APTw及DWI技术,将分子MRI与功能MRI相结合,寻找一种有效、无侵袭性术前预测直肠癌TB等级的方法。

1 材料与方法

1.1 研究对象

       本研究遵守《赫尔辛基宣言》,经甘肃省人民医院伦理委员会批准,免除受试者知情同意,批准文号2024-380。回顾性分析2023年7月至2024年9月甘肃省人民医院经病理确诊的273例直肠癌患者的临床及MRI图像资料。纳入标准:(1)术前2周内接受盆腔MR检查,包括APTw和DWI序列;(2)行直肠癌根治性切除术且经病理确诊为直肠腺癌;(3)完整的病理信息,包括TB等级。排除标准:(1)术前接受过任何治疗(放化疗、化疗或免疫治疗);(2)肿瘤病灶范围小,无法测量[最小感兴趣区(region of interest, ROI)20 mm3];(3)图像因伪影,无法识别肿瘤与周围正常区域。患者纳入和排除以及分组具体流程如图1所示。

图1  直肠癌患者纳入、排除及分组流程。APTw:酰胺质子转移加权;DWI:扩散加权成像。
Fig. 1  Rectal cancer patient inclusion, exclusion and grouping process. APTw: amide proton transfer weighted; DWI: diffusion-weighted imaging.

1.2 资料采集

       临床资料包括:性别、年龄,术前一周内癌胚抗原及糖类抗原199、术前病理分化程度;影像学指标包括:参考小视野高分辨T2WI及DWI图像,根据肿瘤侵及肠壁范围、肿瘤与直肠系膜及邻近器官关系判断T分期(MRI-T分期),根据淋巴结的形态、边界和信号强度特征判断MRI的N分期(MRI-N分期)。

1.3 扫描方法与参数

       MRI检查采用飞利浦3.0 T(ingenia Elition,飞利浦)磁共振扫描仪16通道体部线圈进行扫描。检查前嘱患者排便排尿,禁食水4 h,避免肠蠕动影响诊断结果。患者取仰卧位、头先进,扫描序列包括轴位T2WI、矢状位T2WI、轴位DWI、轴位APTw及斜轴位高分辨小视野T2WI,具体参数如表1所示。以矢状面T2WI作为定位像,确定轴位T2WI及DWI扫描层面(在肿瘤水平垂直于直肠壁);APTw序列扫描选择病变显示最大的层面,定位垂直于病变长轴。斜轴位高分辨小视野T2WI定位垂直于病变长轴,扫描范围应包含肿瘤全范围,扫描参数:采用快速自旋回波(turbo spin echo, TSE)序列,回波时间/重复时间:4030/90 ms,层厚3.5 mm,视野200 mm×200 mm、矩阵252×243。

表1  MRI扫描序列和参数
Tab. 1  MRI Scan sequence parameters

1.4 图像处理与数据测量

       将APTw图像上传到工作站(IntelliSpacePortal, ISP),经过后处理得到APTw伪彩图,将APTw伪彩图与T2WI轴位图像进行融合;由两名经验丰富的影像医师(从事腹部影像诊断分别为8年、5年)在病理结果不知情的情况下,参照小视野高分辨率T2WI、DWI图像,在融合的APTw图像及ADC图上勾画ROI,测量肿瘤的APT、ADC值。ROI的勾画原则:每位医师在APTw-T2WI融合图像及ADC图上选择肿瘤最大层面上下四层,各层均在肿瘤实质区内手动勾画圆形ROI,ROI的放置范围应尽可能大,但需要避开出血、坏死、囊变等区域,适当避开病灶边缘防止部分容积效应,尽可能保证在各层APTw及ADC图像勾画ROI的大小一致。最后分析结果采用两位医师测量的肿瘤最大层面上下四层的APT、ADC值的平均值。如图2、图3所示。

图2  男,49岁,直肠腺癌,低级别肿瘤出芽。2A:高分辨小视野T2WI,可见肠壁弥漫性不均匀增厚,呈低信号(箭),系膜内脂肪间隙清晰,另见一枚直径约3.59 mm的淋巴结,MRI分期为T2N0Mx;2B:APTw伪彩图与T2WI的融合图,APT值为1.8%,ROI范围为98 mm3(箭);2C~2D:DWI及相对应的ADC图,DWI呈高信号,ADC为低信号,ADC值为1.17×10-3 mm2/s,ROI范围为98 mm3(箭);2E:病理图(HE ×100),肿瘤浸润前沿小于4个。
图3  女,69岁,直肠腺癌,高级别肿瘤出芽。3A:高分辨小视野T2WI,可见肠壁不均匀增厚,呈低信号(箭),肿瘤突破固有肌层外膜,到达直肠周围系膜脂肪内约5~15 mm,另见一枚直径约6.97 mm的淋巴结,形态欠规整,MRI分期为T3cN1Mx;3B:APTw伪彩图与T2WI的融合图,APT值为3.7%,ROI范围为147 mm3(箭);3C~3D:DWI及相对应的ADC图,DWI呈高信号,ADC为低信号,ADC值为0.73×10-3 mm2/s,ROI范围为144 mm3(箭);3E:病理图(HE ×100),肿瘤浸润前沿大于10个芽。APTw:酰胺质子转移加权;ROI:感兴趣区;DWI:扩散加权成像;ADC:表观扩散系数。
Fig. 2  Male, 49 years old, rectal adenocarcinoma with low-grade TB. 2A: A high-resolution small field of view T2-weighted imaging (HR-T2WI), showing diffuse and uneven thickening of the intestinal wall with low signal intensity (arrow), clear fat spaces within the mesentery, and an additional lymph node with a diameter of approximately 3.59 mm, the MRI staging is T2N0Mx; 2B: The fused image of APTw pseudo-color map and T2WI, indicating an APT value of 1.8% with an ROI size of 98 mm³ (arrow); 2C-2D: The fused image of DWI and corresponding ADC maps, respectively, DWI demonstrates high signal intensity, while the ADC map shows low signal, with an ADC value of 1.17 × 10⁻³ mm2/s, the ROI size is 98 mm³ (arrow); 2E: The pathological image (HE ×100), revealing less than 4 buds at the tumor invasion front.
Fig. 3  Female, 69 years old, rectal adenocarcinoma with high-grade TB. 3A: A high-resolution small field of view T2-weighted imaging (HR-T2WI), showing uneven thickening of the intestinal wall with low signal intensity (arrow), the tumor has penetrated the muscularis propria and reached approximately 5 to 15 mm into the perirectal mesenteric fat, additionally, there is a lymph node with an irregular shape and a diameter of about 6.97 mm, the MRI staging is T3cN1Mx; 3B: The fused image of APTw pseudo-color map and T2WI, showing an APT value of 3.7% with an ROI size of 147 mm³ (arrow); 3C-3D: DWI and corresponding ADC maps, respectively, DWI exhibits high signal intensity, while the ADC map shows low signal intensity, with an ADC value of 0.73 × 10⁻³ mm2/s, the ROI size is 144 mm³ (arrow); 3E: The pathological image (HE ×100), revealing more than 10 buds at the tumor invasion front. TB: tumor budding; APTw: amide proton transfer weighted; ROI: region of interest; DWI: diffusion-weighted imaging; ADC: apparent diffusion coefficient.

1.5 病理分析

       根据2016年国际肿瘤出芽共识会议(International Tumor Budding Consensus Conference, ITBCC)[9]建议,手术标本经固定、石蜡包埋切片后进行苏木精-伊红染色,封片后显微镜下观察。由两名经验丰富的病理医师(分别为具有3年诊断经验的主治医师和8年诊断经验的主任医师)对TB进行计数和评分,并达成共识。在低倍镜下寻找TB最密集的部位,转为高倍镜视野下选取10个视野进行出芽计数。出芽等级用Bd来表示,并定义如下:Bd 1(低级)为0~4个芽,Bd 2(中级)为5~9个芽,Bd 3(高级)为10个芽或更多。根据病理结果将患者分为两组进行分析,中-低级别组(Bd 1+2)和高级别(Bd 3)组。

1.6 统计学方法

       采用IBM SPSS Statistics 25.0和MedCalc 20.0软件进行统计分析。对计量资料进行正态性检验,符合正态分布的数据以(x¯±s)表示,组间比较采用独立样本t检验,不符合正态分布的数据以MQ1,Q3)表示,组间比较采用Mann-Whitney U检验;计数资料以例数(百分数)表示,两组间比较采用χ2检验。应用二元logistic回归整体输入法分析变量与直肠癌TB等级的相关性;采用组内相关系数(intra-class correlation coefficient, ICC)对观察者间所测数据的一致性进行检测,若ICC值>0.75即一致性良好。采用受试者工作特征(receiver operating characteristic, ROC)曲线分析差异有统计学意义的参数以及其联合后的评估效能,计算曲线下面积(area under the curve, AUC)及其95%置信区间,以及对应的阈值、敏感度、特异度。采用DeLong检验比较各AUC的差异。通过决策曲线分析(decision curve analysis, DCA)以确定预测模型的临床实用性。采用Spearman相关性分析方法来分析各参数与TB的相关性。P<0.05为差异有统计学意义。

2 结果

2.1 临床资料

       本研究共纳入121例直肠癌患者,其中中-低级别组69例,高级别组52例。两组患者在年龄、性别、癌胚抗原、糖类抗原199、MRI-N分期及肿瘤分化程度差异均无统计意义(P>0.05);MRI-T分期在两组中差异具有统计学意义(P=0.031),具体如表2所示。

表2  直肠癌不同级别肿瘤出芽患者临床病理特征比较
Tab. 2  Comparison of clinicopathological features in rectal cancer patients with different tumor budding grades

2.2 观察者间测量数据的一致性检验

       两位医师测得的APT值的ICC为0.925(95% CI:0.896~0.946),ADC值的ICC为0.877(95% CI:0.830~0.911),ICC均>0.75,表明测量结果具有良好的重复性。

2.3 直肠癌不同级别TB APT和ADC值的比较

       中-低级别直肠癌TB组的APT值(2.068%±0.588%)低于高级别TB组(3.167%±0.592%),差异具有统计学意义(t=-10.136,P<0.001);中-低级别直肠癌TB组的ADC值[(1.064±0.131)×10-3 mm2/s]高于高级别TB组[(0.903±0.138)×10-3 mm2/s],差异具有统计学意义(t=6.508,P<0.001)。具体见表3图4

图4  不同级别肿瘤出芽APT值(4A)和ADC值(4B)的小提琴图。APT:酰胺质子转移;ADC:表观扩散系数。
Fig. 4  Violin plots of APT values (4A) and ADC values (4B) for tumors at different levels of budding. APT: amide proton transfer; ADC: apparent diffusion coefficient.
表3  直肠癌不同级别肿瘤出芽APT及ADC值的比较
Tab. 3  Comparison of APT and ADC values in rectal cancer patients with different tumor budding grades

2.4 直肠癌TB等级危险因素分析

       基于临床及影像特征的单因素logistic回归分析结果显示,MRI-T分期(T2比T4)、APT和ADC是影响直肠癌患者TB等级的相关因素(P<0.05);多因素logistic回归分析结果显示,APT值[比值比:15.079(95% CI:4.822~47.154)]和ADC值[比值比:0.004(95% CI:0.001~0.228)]是预测TB等级的独立危险因素(P<0.05)(表4)。

表4  影响直肠癌患者TB等级的单因素及多因素分析
Tab. 4  Univariate and multivariate analysis affecting TB grade in rectal cancer patients

2.5 APT和ADC值对直肠癌TB等级的诊断效能

       APT值与ADC值评估直肠癌TB等级的AUC为0.916(95% CI:0.852~0.959)、0.821(95% CI:0.740~0.884),两者联合后AUC为0.918(95% CI:0.853~0.960)。具体见表5图5。DeLong检验结果显示ADC值与APT值、两者联合后评估TB等级的AUC间差异有统计学意义(P=0.024、0.004)。DCA结果显示,两者联合后在预测直肠癌TB等级方面的临床效益优于单独APT及ADC(图6)。

图5  APT、ADC及两者联合后预测TB等级的ROC曲线。
图6  APT、ADC及两者联合后预测TB等级的决策曲线。APT为酰胺质子转移;ADC为表观扩散系数;TB为肿瘤出芽;ROC为受试者工作特征。
Fig. 5  Predicting the ROC curve of TB grade using APT, ADC, and their combination.
Fig. 6  Decision curve for predicting TB grades suing APT, ADC, and their combination. ROC: receiver operating characteristic; TB: tumor budding; APT: amide proton transfer; ADC: apparent diffusion coefficient.
表5  APT、ADC值对直肠癌不同等级TB的诊断效能
Tab. 5  The efficacy of APT and ADC values for different grade of tumor budding in rectal cancer

2.6 相关性分析

       Spearman相关性分析结果显示,APT值与TB等级呈中度正相关(r=0.713,P<0.001),ADC值与TB等级呈中度负相关(r=-0.550,P<0.001)。

3 讨论

       本研究探讨了APTw联合DWI定量成像技术在无创预测直肠癌TB等级中的应用价值,结果发现高级别TB组的APT值高于中-低级别组,高级别TB组ADC值低于中-低级别组。APT值联合ADC值的诊断效能最高(AUC=0.918)。本研究首次在国内外报道APTw联合DWI评估直肠癌TB等级,为直肠癌TB等级的术前评估提供了新思路。

3.1 APTw技术在评估直肠癌TB等级中的价值

       APTw是一种基于化学交换饱和转移(chemical exchange saturation transfer, CEST)的分子MRI技术,通过施加特定频率的饱和脉冲使蛋白质及多肽中酰胺质子的氢质子饱和,并与水中的氢质子发生交换,通过测量交换前后氢质子信号强度的变化,无创性地检测肿瘤中内源性移动的蛋白质和多肽。既往研究证明APTw成像在肿瘤分级、肿瘤预后相关因素评估方面具有潜在的价值,张攀等[20]使用APTw评估了胶质瘤患者的组织学分级,发现APT值与胶质瘤分级呈正相关;CHEN等[16]探讨了APTw与直肠癌病理预后因素的相关性,结果表明低分化、更晚期、淋巴结转移和壁外血管侵犯阳性的直肠癌患者,其APT值明显更高。APT值的高低受体内游离蛋白质及多肽含量的影响,在恶性肿瘤中由于肿瘤细胞增殖,局部代谢速度快,产生了更多的内源性游离蛋白质及多肽[21],因此具有更高的APT值;此外,APT值还受到温度及酸碱度的影响[22],由于人体内环境温度及酸碱度的差异较小,因此APT值受此影响较小。在本研究中,高级别TB直肠癌具有更高的APT值,可能是因为高级别的TB过程中伴随着更多的上皮-间质转化(epithelial mesenchymal transformation, EMT)[23],EMT能够促使肿瘤上皮细胞像间质细胞一样具有侵袭性[6, 24],促进肿瘤细胞运动能力的增强,促使大分子物质和细胞膜之间的交换加快,促使蛋白及多肽的释放;其次,高级别TB组织中的肿瘤细胞比中-低级别TB组织内的细胞增殖更迅速,细胞代谢更活跃,细胞内可移动蛋白和多肽更多,蛋白浓度升高进而引起APT值升高。另外,TB级别越高的肿瘤侵袭性越强,其病灶前缘新生血管越丰富,血红蛋白和血浆蛋白含量增加引起APT值升高[25, 26]。此外,本研究结果也显示APT值[比值比:15.079(95% CI:4.822~47.154)]与TB等级有非常强的相关性。因此,在直肠癌患者中,通过APTw成像能够在治疗前评估TB状态。

3.2 DWI技术在评估直肠癌TB等级中的价值

       作为临床常用的MRI技术,本研究还探讨了ADC值在直肠癌TB评估中的价值。ADC量化了活体组织内水分子扩散运动的状态,已广泛应用在缺血性脑卒中的早期诊断、良恶性肿瘤的鉴别等方面[27, 28]。冯飞文等[29]研究发现,直肠癌肿瘤沉积阳性组ADC值小于肿瘤沉积阴性组,可能是因为肿瘤沉积阳性组病灶内部细胞排列密集、密度高,提示ADC值可反映肿瘤组织中肿瘤细胞的排列紧密情况。在本研究中高级别TB的ADC值低于中-低级别TB [(0.90±0.14)×10-3 mm2/s vs.(1.06±0.13)×10-3 mm2/s],可能是由于高级别TB的肿瘤在浸润边缘有更多的肿瘤细胞,使得细胞密度更高从而限制了水分子的扩散,该结果与CHEN等[30]的研究结果类似。本研究结果显示ADC值区分TB等级的Cut-off值0.98×10-3 mm2/s,敏感度为88.46%,特异度为72.46%。

3.3 APTw联合DWI在评估直肠癌TB等级中的价值

       尽管APTw和ADC均能够预测直肠癌TB等级,但APTw和DWI原理不同,APTw成像能够从细胞及分子水平检测内源性游离蛋白质和多肽分子的含量,从而间接反映肿瘤细胞内代谢变化及病理生理信息[31],而DWI用于描述组织中不同方向的分子扩散运动的速度和范围,在一定程度上揭示肿瘤组织中肿瘤细胞的排列紧密[32]。CHEN等[33]发现相较于单独使用治疗前APT值或ADC值,两者联合可提高预测局部晚期直肠癌患者新辅助放化疗反应的效能。因此本研究尝试了联合APT及ADC值来评估直肠癌患者的TB等级,结果显示两者联合比ADC值有更高的评估价值,但与APT相比并未显著提高预测性能,但提高了诊断的特异度及敏感度,为直肠癌TB等级的术前精准评估提供了新方法。此外,本研究显示高级别TB更容易出现在T分期更高(T3~T4)的患者中,多因素分析结果提示APT和ADC值可能与肿瘤T分期存在着一定的相关性。

3.4 本研究的局限性

       第一,本研究为单中心研究,APTw技术在盆腔的扫描中缺乏统一的参数,研究结果需要进一步多中心验证;第二,测量肿瘤的APT和ADC值未选取全肿瘤轮廓作为ROI,另外排除肿瘤体积小,避开病灶出血、囊变及坏死区域,可能会使测量结果不能充分反映肿瘤特性。

4 结论

       综上所述,APT和ADC值均能够术前有效评估直肠癌TB等级,两者联合评估直肠癌TB等级具有更高的价值,为临床精准评估直肠癌患者TB状态,特别是为非手术治疗的直肠癌患者提供了新的思路和方法。

[1]
国家卫生健康委员会医政司, 中华医学会肿瘤学分会. 中国结直肠癌诊疗规范(2023版)[J]. 协和医学杂志, 2023, 14(4): 706-733. DOI: 10.12290/xhyxzz.2023-0315.
General Office of National Health Commission of the People's Republic of China, Oncology Branch of the Chinese Medical Association. The Standard for Diagnosis and Treatment of Chinese Colorectal Cancer(2023 Version)[J]. Med J Peking Union Med Coll Hosp, 2023, 14(4): 706-733. DOI: 10.12290/xhyxzz.2023-0315.
[2]
BRAY F, LAVERSANNE M, SUNG H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74(3): 229-263. DOI: 10.3322/caac.21834.
[3]
姚宏伟, 李心翔, 崔龙, 等. 中国结直肠癌手术病例登记数据库2022年度报告: 一项全国性登记研究[J]. 中国实用外科杂志, 2023, 43(1): 93-99. DOI: 10.19538/j.cjps.issn1005-2208.2023.01.13.
YAO H W, LI X X, CUI L, et al. Annual report of Chinese colorectal cancer surgery database in 2022: a nationwide registry study[J]. Chin J Pract Surg, 2023, 43(1): 93-99. DOI: 10.19538/j.cjps.issn1005-2208.2023.01.13.
[4]
BENSON A B, VENOOK A P, AL-HAWARY M M, et al. Rectal cancer, version 2.2022, NCCN clinical practice guidelines in oncology[J]. J Natl Compr Canc Netw, 2022, 20(10): 1139-1167. DOI: 10.6004/jnccn.2022.0051.
[5]
FADEL M G, AHMED M, SHAW A, et al. Oncological outcomes of local excision versus radical surgery for early rectal cancer in the context of staging and surveillance: a systematic review and meta-analysis[J/OL]. Cancer Treat Rev, 2024, 128: 102753 [2024-03-04]. https://pubmed.ncbi.nlm.nih.gov/38761791/. DOI: 10.1016/j.ctrv.2024.102753.
[6]
LUGLI A, ZLOBEC I, BERGER M D, et al. Tumour budding in solid cancers[J]. Nat Rev Clin Oncol, 2021, 18(2): 101-115. DOI: 10.1038/s41571-020-0422-y.
[7]
VAN WYK H C, PARK J, ROXBURGH C, et al. The role of tumour budding in predicting survival in patients with primary operable colorectal cancer: a systematic review[J]. Cancer Treat Rev, 2015, 41(2): 151-159. DOI: 10.1016/j.ctrv.2014.12.007.
[8]
ROGERS A C, WINTER D C, HEENEY A, et al. Systematic review and meta-analysis of the impact of tumour budding in colorectal cancer[J]. Br J Cancer, 2016, 115(7): 831-840. DOI: 10.1038/bjc.2016.274.
[9]
LUGLI A, KIRSCH R, AJIOKA Y, et al. Recommendations for reporting tumor budding in colorectal cancer based on the International Tumor Budding Consensus Conference (ITBCC) 2016[J]. Mod Pathol, 2017, 30(9): 1299-1311. DOI: 10.1038/modpathol.2017.46.
[10]
TROTSYUK I, SPARSCHUH H, MÜLLER A J, et al. Tumor budding outperforms ypT and ypN classification in predicting outcome of rectal cancer after neoadjuvant chemoradiotherapy[J/OL]. BMC Cancer, 2019, 19(1): 1033 [2024-03-04]. https://pubmed.ncbi.nlm.nih.gov/31675950/. DOI: 10.1186/s12885-019-6261-5.
[11]
KIM S, HUH J W, LEE W Y, et al. Prognostic impact of lymphatic invasion, venous invasion, perineural invasion, and tumor budding in rectal cancer treated with neoadjuvant chemoradiotherapy followed by total mesorectal excision[J]. Dis Colon Rectum, 2023, 66(7): 905-913. DOI: 10.1097/DCR.0000000000002266.
[12]
JÄGER T, NEUREITER D, FALLAHA M, et al. The potential predictive value of tumor budding for neoadjuvant chemoradiotherapy response in locally advanced rectal cancer[J]. Strahlenther Onkol, 2018, 194(11): 991-1006. DOI: 10.1007/s00066-018-1340-0.
[13]
ZHOU J Y, PAYEN J F, WILSON D A, et al. Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI[J]. Nat Med, 2003, 9(8): 1085-1090. DOI: 10.1038/nm907.
[14]
ZHOU J Y, ZAISS M, KNUTSSON L, et al. Review and consensus recommendations on clinical APT-weighted imaging approaches at 3T: Application to brain tumors[J]. Magn Reson Med, 2022, 88(2): 546-574. DOI: 10.1002/mrm.29241.
[15]
PADHANI A R, KOH D M, COLLINS D J. Whole-body diffusion-weighted MR imaging in cancer: current status and research directions[J]. Radiology, 2011, 261(3): 700-718. DOI: 10.1148/radiol.11110474.
[16]
CHEN W C, LI L, YAN Z X, et al. Three-dimension amide proton transfer MRI of rectal adenocarcinoma: correlation with pathologic prognostic factors and comparison with diffusion kurtosis imaging[J]. Eur Radiol, 2021, 31(5): 3286-3296. DOI: 10.1007/s00330-020-07397-1.
[17]
XIANG Y, ZHANG Q J, CHEN X, et al. Synthetic MRI and amide proton transfer-weighted MRI for differentiating between benign and malignant sinonasal lesions[J]. Eur Radiol, 2024, 34(10): 6820-6830. DOI: 10.1007/s00330-024-10696-6.
[18]
BULENS P, COUWENBERG A, INTVEN M, et al. Predicting the tumor response to chemoradiotherapy for rectal cancer: Model development and external validation using MRI radiomics[J]. Radiother Oncol, 2020, 142: 246-252. DOI: 10.1016/j.radonc.2019.07.033.
[19]
ZHAO X Y, XIE P Y, WANG M M, et al. Deep learning-based fully automated detection and segmentation of lymph nodes on multiparametric-MRI for rectal cancer: a multicentre study[J/OL]. EBioMedicine, 2020, 56: 102780 [2024-03-04]. https://pubmed.ncbi.nlm.nih.gov/32512507/. DOI: 10.1016/j.ebiom.2020.102780.
[20]
张攀, 丁伟伟, 王爱军, 等. 酰胺质子转移联合3D动脉自旋标记成像在高级别胶质瘤诊断中的应用[J]. 中国医学影像学杂志, 2022, 30(10): 981-985. DOI: 10.3969/j.issn.1005-5185.2022.10.002.
ZHANG P, DING W W, WANG A J, et al. Diagnostic application of amide proton transfer imaging combined with three-dimensional arterial spin labeling in patients with high-grade brain tumor[J]. Chin J Med Imag, 2022, 30(10): 981-985. DOI: 10.3969/j.issn.1005-5185.2022.10.002.
[21]
SCHÖN S, CABELLO J, LIESCHE-STARNECKER F, et al. Imaging glioma biology: spatial comparison of amino acid PET, amide proton transfer, and perfusion-weighted MRI in newly diagnosed gliomas[J]. Eur J Nucl Med Mol Imaging, 2020, 47(6): 1468-1475. DOI: 10.1007/s00259-019-04677-x.
[22]
ZHOU J Y, HEO H Y, KNUTSSON L, et al. APT-weighted MRI: Techniques, current neuro applications, and challenging issues[J]. J Magn Reson Imaging, 2019, 50(2): 347-364. DOI: 10.1002/jmri.26645.
[23]
DE SMEDT L, PALMANS S, ANDEL D, et al. Expression profiling of budding cells in colorectal cancer reveals an EMT-like phenotype and molecular subtype switching[J]. Br J Cancer, 2017, 116(1): 58-65. DOI: 10.1038/bjc.2016.382.
[24]
PAVLIČ A, BOŠTJANČIČ E, KAVALAR R, et al. Tumour budding and poorly differentiated clusters in colon cancer-different manifestations of partial epithelial-mesenchymal transition[J]. J Pathol, 2022, 258(3): 278-288. DOI: 10.1002/path.5998.
[25]
ZHENG S K, VAN DER BOM I M J, ZU Z L, et al. Chemical exchange saturation transfer effect in blood[J]. Magn Reson Med, 2014, 71(3): 1082-1092. DOI: 10.1002/mrm.24770.
[26]
周振, 沈浮, 陆海迪, 等. 动态增强磁共振成像术前评估直肠癌肿瘤出芽等级的价值[J]. 中国医学计算机成像杂志, 2022, 28(4): 379-384. DOI: 10.19627/j.cnki.cn31-1700/th.2022.04.002.
ZHOU Z, SHEN F, LU H D, et al. The value of dynamic contrast-enhanced magnetic resonance imaging for preoperative evaluation of the tumor budding of rectal cancer[J]. Chin Comput Med Imag, 2022, 28(4): 379-384. DOI: 10.19627/j.cnki.cn31-1700/th.2022.04.002.
[27]
MOORES M, JOUNDI R A, SINGH N, et al. Magnetic resonance imaging assists with determining etiology after transient ischemic attack or minor stroke[J/OL]. J Am Heart Assoc, 2024, 13(7): e033817 [2024-03-04]. https://pubmed.ncbi.nlm.nih.gov/38533977/. DOI: 10.1161/JAHA.123.033817.
[28]
ZHANG G W, XU Z L, ZHENG J Y, et al. Prognostic value of multi b-value DWI in patients with locally advanced rectal cancer[J]. Eur Radiol, 2023, 33(3): 1928-1937. DOI: 10.1007/s00330-022-09159-7.
[29]
冯飞文, 刘原庆, 胡粟, 等. 全容积ADC直方图分析联合ADC值术前预测直肠癌肿瘤沉积的价值[J]. 磁共振成像, 2024, 15(4): 88-92. DOI: 10.12015/issn.1674-8034.2024.04.014.
FENG F W, LIU Y Q, HU S, et al. The value of whole-volume ADC histogram analysis combined with ADC value in preoperatively prediction of tumor deposits in rectal cancer[J]. Chin J Magn Reson Imag, 2024, 15(4): 88-92. DOI: 10.12015/issn.1674-8034.2024.04.014.
[30]
CHEN F Y, ZHANG S T, MA X L, et al. Prediction of tumor budding in patients with rectal adenocarcinoma using b-value threshold map[J]. Eur Radiol, 2023, 33(2): 1353-1363. DOI: 10.1007/s00330-022-09087-6.
[31]
WU M H, JIANG T L, GUO M, et al. Amide proton transfer-weighted imaging and derived radiomics in the classification of adult-type diffuse gliomas[J]. Eur Radiol, 2024, 34(5): 2986-2996. DOI: 10.1007/s00330-023-10343-6.
[32]
ZHENG X, LU T Y, TANG Q, et al. The clinical value of applying diffusion-weighted imaging combined with T2-weighted imaging to assess diagnostic performance of muscularis propria invasion in mid-to-high rectal cancer[J/OL]. Abdom Radiol, 2024 [2024-12-27]. https://pubmed.ncbi.nlm.nih.gov/39207517/. DOI: 10.1007/s00261-024-04536-w.
[33]
CHEN W C, MAO L T, LI L, et al. Predicting treatment response of neoadjuvant chemoradiotherapy in locally advanced rectal cancer using amide proton transfer MRI combined with diffusion-weighted imaging[J/OL]. Front Oncol, 2021, 11: 698427 [2024-12-28]. https://pubmed.ncbi.nlm.nih.gov/34277445/. DOI: 10.3389/fonc.2021.698427.

上一篇 肿瘤及直肠系膜IVIM参数预测直肠癌同时性肝转移的价值研究
下一篇 MRI-ADC联合临床病理特征对结直肠癌微卫星不稳定性状态的研究
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2