分享:
分享到微信朋友圈
X
综述
基于无创成像技术评估心外膜脂肪组织与心血管疾病相关性的研究进展
宋嘉敏 李瑞 雷丰 唐阳阳 郭顺林

Cite this article as: SONG J M, LI R, LEI F, et al. Research progress on the correlation between epicardial adipose tissue and cardiovascular diseases based on non-invasive imaging techniques[J]. Chin J Magn Reson Imaging, 2024, 15(12): 218-223.本文引用格式:宋嘉敏, 李瑞, 雷丰, 等. 基于无创成像技术评估心外膜脂肪组织与心血管疾病相关性的研究进展[J]. 磁共振成像, 2024, 15(12): 218-223. DOI:10.12015/issn.1674-8034.2024.12.034.


[摘要] 心外膜脂肪组织(epicardial adipose tissue, EAT)作为代谢活跃的内分泌器官,可通过炎症、胰岛素抵抗和氧化应激等机制参与介导心血管疾病的发生、发展。无创成像技术量化的心外膜脂肪厚度、体积等参数为心血管疾病的早期预防、风险评估及疗效监测提供了有力支持。本文将系统地综述基于多模态无创成像技术评估心外膜脂肪与心血管疾病发生、发展及预后的相关性的研究现况,以期在临床实践中为无创成像技术评估EAT提供参考,实现对各种心血管疾病的早期干预。
[Abstract] Epicardial adipose tissue (EAT) is a metabolically active endocrine organ that can be involved in mediating the onset and progression of cardiovascular disease through mechanisms such as inflammation, insulin resistance, and oxidative stress. Parameters such as EAT thickness and volume measured by noninvasive imaging techniques provide strong support for the early prevention, risk assessment, and therapeutic effect monitoring of cardiovascular disease. This article will systematically review the current state of research on the correlation between EAT by multimodal imaging techniques and the occurrence, progression, and prognosis of cardiovascular disease. The aim is to provide a reference for imaging assessment of EAT in clinical practice and to achieve early intervention for various cardiovascular disease.
[关键词] 心外膜脂肪组织;心血管疾病;磁共振成像;计算机断层扫描;超声心动图
[Keywords] epicardial adipose tissue;cardiovascular diseases;magnetic resonance imaging;computed tomography;echocardiography

宋嘉敏 1   李瑞 1   雷丰 1   唐阳阳 1   郭顺林 1, 2*  

1 兰州大学第一临床医学院,兰州 730030

2 兰州大学第一医院放射科,兰州 730030

通信作者:郭顺林,E-mail: guoshl@lzu.edu.cn

作者贡献声明:郭顺林拟定本综述的写作思路,并对稿件重要内容进行了修改;宋嘉敏设计、起草和撰写稿件,获取、分析并解释本综述的参考文献;李瑞、雷丰、唐阳阳获取、分析或解释本综述的参考文献,对稿件内容进行了修改。全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


收稿日期:2024-08-12
接受日期:2024-12-10
中图分类号:R445.2  R541.7 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2024.12.034
本文引用格式:宋嘉敏, 李瑞, 雷丰, 等. 基于无创成像技术评估心外膜脂肪组织与心血管疾病相关性的研究进展[J]. 磁共振成像, 2024, 15(12): 218-223. DOI:10.12015/issn.1674-8034.2024.12.034.

0 引言

       心血管疾病由于其高患病率、高死亡率和高再入院率的特征,造成的健康和经济负担已经成为一个全球性的问题[1]。尽管我国的临床医疗护理技术发展迅速,但心血管疾病的发病率和死亡率仍在升高,且在死亡构成比中占据首位[2]。目前,许多研究发现,心外膜脂肪组织(epicardial adipose tissue, EAT)作为一个内分泌器官,对心脏的功能和形态有重要影响[3, 4]。近年来,超声心动图、计算机断层扫描和心脏磁共振等无创成像技术飞速发展,已被用于EAT的量化,并揭示了EAT在心血管疾病危险分层、早期预防、靶向治疗及预后评估等方面具有重要意义[5, 6, 7],早期定量EAT有助于准确评价病情,调整治疗方案,改善预后。

       近年来,关于无创成像技术定量EAT与各种心血管疾病相关性的研究不断发展,比如,JEHN等[8]发现通过超声心动图测量的EAT厚度可以预测急性胸痛患者是否存在阻塞性冠状动脉疾病。WANG等[9]研究发现,利用CT测得的EAT体积是室性早搏患者消融后复发的独立预测因子。但相关的文章在疾病种类和成像技术的归纳上较为局限、单一,无创成像技术评估EAT方法的选择尚缺乏共识。因此,本文将系统地综述基于多模态无创成像技术评估心外膜脂肪与心血管疾病发生、发展及预后的相关性的研究现况,以期在临床实践中为无创成像技术评估EAT提供参考,实现对各种心血管疾病的早期干预。

1 EAT

       EAT位于心肌和心包膜的内脏层之间,是一种特殊类型的内脏脂肪组织,因缺乏筋膜分隔而与心肌和冠状动脉直接接触[10]。其作为一种具有代谢活性的内分泌器官,可通过细胞因子和趋化因子发挥旁分泌或血管分泌作用,影响心脏和冠状动脉[11]。在正常生理条件下,EAT对心脏有保护作用:(1)缓冲心脏外压损伤,机械保护冠状血管;(2)为心肌提供能量;(3)分泌如脂联素、肾上腺髓质素等具有抗炎或抗动脉粥样硬化作用的细胞因子;(4)保护心脏免受脂肪酸毒性的影响。但在病理条件下,EAT的异常可促进促炎脂肪因子的产生,导致低级别炎症微环境、内皮功能障碍和氧化应激,最终导致多种心血管疾病[12]。有研究发现EAT是心血管疾病预测和预后的影像标志物,EAT厚度和体积的增加是不良心血管事件的独立预测因子[13]。因此,利用无创成像技术对心外膜脂肪进行量化,并探究其与心血管疾病之间的关联,成为当前研究的热点。

       无创成像技术可以获得EAT的厚度、体积、平均衰减等放射学特征,对研究EAT与心血管疾病的关系具有重要价值。目前,针对EAT的评估,主要有三种非侵入性的成像技术。首先,在超声心动图(echocardiography, ECHO)上,EAT表现为心室壁之间的高回声区,可在二维层面从胸骨旁左室长轴和短轴视图评估右心室游离壁的EAT厚度。ECHO测得的脂肪组织厚度与CT量化的脂肪组织体积之间具有良好的相关性[14]。二维层面上测量的EAT参数质量欠佳,三维ECHO测量的准确度更高,但可用性低,比较耗时。心脏计算机断层扫描(cardiac computed tomography, CCT)可在三维层面对EAT进行评估,CCT对脂肪定量具有较高的空间分辨率和重现性,可获得脂肪组织的体积、密度等,但存在辐射和复杂的人工分割的局限性。正电子发射断层显像/X线计算机体层成像仪(positron emission tomography/computedtomography, PET/CT)可对EAT容量进行评估,将解剖数据与功能信息联系起来,但受到价格昂贵、辐射剂量大的限制。心脏磁共振(cardiac magnetic resonance, CMR)无辐射且是测量EAT的“金标准”,可以很好地显示内脏和心包壁层,被认为是评估EAT体积最简便的无创方法[15, 16]。CMR通常在电影序列上量化EAT,可以在三维层面实现高度可重复性的测量。但受空间分辨率和成本较高的限制。

       近年来,随着人工智能的发展,深度学习在EAT分割中的应用也越来越广泛,不仅耗时短,且分割精度高,与手动分割有良好的一致性[17]。无创成像技术评估EAT可作为监测心血管疾病及其并发症、评估心血管疾病风险的重要诊断工具。因此,运用无创性成像技术评估EAT,无疑为心血管疾病的防治开辟了新的路径,成为了一个极具潜力的干预靶点。

2 EAT与心血管疾病

2.1 EAT与冠状动脉疾病

       冠状动脉疾病(coronary artery disease, CAD)是世界范围内最常见、最致命的心血管疾病[1]。EAT通过炎症、胰岛素抵抗和氧化应激等机制参与CAD的发生、发展[18]。CAD患者的EAT促炎细胞因子[如肿瘤坏死因子-α(tumor necrosis factor-α, TNF-α)、白细胞介素-6(interleukins-6, IL-6)和单核细胞趋化蛋白-1(monocyte chemotactic protein-1, MCP-1)和瘦素]的表达上调,而抗炎因子脂联素的水平下调,从而增加了炎症和氧化应激,加重了冠状动脉和心肌的炎症反应和纤维化重构,增加了心血管不良事件的发生[19, 20]。在CAD患者心外膜脂肪中,M1/M2巨噬细胞以促炎方式极化[21],这进一步说明,CAD患者的EAT具有更大的促炎特性。研究表明,有严重冠状动脉粥样硬化的患者,其餐后血糖、胰岛素的升高以及血清脂联素的减少与EAT脂肪细胞较高的氧化应激显著相关[22]。鉴于活性氧(reactive oxygen species, ROS)能够触发持续的慢性炎症反应,高水平的氧化应激状态可能通过激活心外膜脂肪组织内的炎症信号来促进CAD的发生和进展[23]。此外,通过超声测量的EAT的厚度与内皮功能障碍有关[24],因此可以预测动脉粥样硬化的早期可逆阶段,为早期干预提供可能。

       之前一项涉及21项研究的荟萃分析表明CAD的严重程度和EAT显著相关,CAD组EAT的体积和厚度均比非CAD组大,且重度狭窄组大于轻度/中度狭窄组[25]。此外,有研究使用CMR量化EAT,发现EAT体积和厚度增高的心肌梗死患者,其左心室收缩功能差,梗死的面积更大,且EAT>4 mm是5年随访中主要心血管不良事件的独立预测因子[26, 27]。GAO等[28]通过对240例CAD患者行CTA检查,评估了EAT与高危斑块形成之间的关系,结果显示EAT的体积、密度是高危斑块形成的独立风险因素,且与体积相比,密度对高危斑块存在的预测价值更高。有研究证实在切除冠状动脉周围的心外膜脂肪后,CAD的严重程度降低[29]。此外,有研究表明,通过CMR测得的CAD患者的EAT体积与左室应变和灌注呈负相关[30]。WEI等[31]研究发现,在CT图像上提取的EAT影像组学特征可能在评估冠状动脉粥样硬化性狭窄中发挥作用。综上所述,心外膜脂肪在冠心病的发生和进展中起直接作用,对EAT的靶向治疗有利于冠心病的治疗及预后,而通过无创成像技术早期定量评估EAT具有重要的临床价值。

       尽管已有相当数量关于EAT与CAD相关性的研究,但对部分类型CAD的临床价值仍需进一步验证。如非阻塞性冠状动脉缺血(ischemia with non-obstructive coronary artery, INOCA)患者往往容易被忽视,导致不良心血管事件。而且INOCA的检查非常耗时,且存在并发症的风险,因此非常需要无创影像学生物标志物来提高对INOCA高危个体的识别。EAT因其促炎特性等已被证实与CAD的发生、发展密切相关,而EAT是否可以作为INOCA的影像标志物尚不清楚,需要更多临床研究的支持。

2.2 EAT与心律失常

       心房颤动(atrial fibrillation, AF)是临床上最常见的心律失常,其发病机制主要包括心房电重构和结构重塑。越来越多的研究表明EAT可参与AF的发生和病理生理过程,其机制是:(1)EAT内有大量的自主神经节丛,EAT的增加导致自主神经功能障碍、有效不应期缩短和钙离子瞬变增加,从而造成心房组织电重构;(2)EAT分泌促炎细胞因子,促进心肌纤维化,导致心房结构重塑[32, 33]

       基于超声、CT、CMR等技术的研究清楚地表明EAT与AF之间存在密切的关系。张梅青等[34]回顾性分析了250例AF患者,其中阵发性房颤患者87例,持续性房颤患者51例,窦性心律患者112例,利用超声测量EAT厚度,发现相较于窦性心律患者,持续性AF、阵发性AF患者的EAT厚度增加。一项荟萃分析也表明通过CT或 MRI测量的AF患者的EAT体积大于健康受试者,且持续性AF患者的EAT体积大于阵发性AF患者[35]。除了厚度与体积外,AF患者相比于无心律失常患者,EAT的衰减值也更高[36]

       EAT不但是AF发生和进展的重要预测指标,还有望帮助临床医生指导患者的治疗策略,改善预后。既往研究表明,通过CMR评估的EAT体积与AF消融后复发呈正相关[37]。EAT总体积与PR间期长相关,而PR间期长是持续性AF患者消融后复发的重要风险因素[38]。SANG等[39]对301名接受射频消融手术的房颤患者进行了随访分析,发现通过CT测量的患者的左心房周围EAT体积、衰减值以及左心房直径构成了房颤术后复发的独立风险因素,尤其是在持续性AF患者中表现更为突出,而与阵发性AF患者的复发情况则展现出较弱的相关性。HUBER等[40]在调整了性别、年龄、体重指数、房颤表型、左房容积指数和左房周围EAT体积后,左心房增强EAT与房颤消融术后复发相关,且其对房颤复发的预测价值高于其他CT参数(如EAT体积和衰减值)。YANG等[41]收集了314例AF患者的CT图像,采用互信息和随机森林算法筛选左房周围EAT的影像组学特征并构建模型,显示左房周围EAT影像组学特征是区分AF亚型和预测AF复发的有效工具,对AF的早期诊断和预后具有重要的临床意义。

       研究显示通过CT量化的EAT体积与心率恢复呈反向关系,这表明EAT对心脏自主神经功能有潜在的不利影响[42]。此外,与对照组相比,特发性室性心动过速患者的EAT体积增加[43]。使用CMR测量的EAT厚度还可预测室性心动过速消融后复发[44]。调整了其他混杂因素后,EAT体积增大与室性早搏的高负荷水平独立相关,EAT体积可能是解释室性早搏发病的一种新机制[45]。这进一步表明无创成像技术量化的EAT在心律失常早期预防和预后评估中起着至关重要的作用。

       目前,EAT的积累和再分布与心律失常的关系多为横断面研究且样本量较小,未来可能需要更大的样本量,以及纵向研究来进一步验证EAT的积累和再分布是否与心律失常的预后和复发相关。此外,现有的研究对总体及左房周围EAT与心律失常的相关性均有报道,但两者各项参数(如厚度、体积、密度等)的效能尚未明确,因勾画范围及方式不同,所需后处理工作量也不同,故而明确两者各项参数对心律失常的预测及预后效能的差异,对后续影像和临床医师工作的开展具有重要意义。

2.3 EAT与糖尿病性心肌病

       糖尿病性心肌病(diabetic cardiomyopathy, DCM)是一种心肌特异性微血管病变,其发生独立于冠状动脉病变、高血压性心脏病及心脏瓣膜疾病等常见的心脏疾患,主要特征包括心肌组织的广泛纤维化、心肌肥大以及微血管病变。DCM是糖尿病患者群体中一个不容忽视的致死原因。DCM亚临床期较长,早期心脏收缩功能正常,仅出现舒张性心功能不全,在这个阶段,患者大多没有临床表现,但由于心脏结构的改变,发展到疾病晚期会累及心脏收缩功能,导致心力衰竭。

       胰岛素抵抗是2型糖尿病(type 2 diabetes, T2DM)的发病机制之一。经超声心动图测量的EAT厚度与胰岛素抵抗呈正相关,且预测胰岛素抵抗的最佳临界值为>3.85 mm[46]。有研究使用CMR评估T2DM患者的EAT,发现与正常对照组相比,T2DM患者的EAT体积明显更高,心肌微循环受损更严重,双心室功能更低。EAT体积增加与微血管功能障碍、双心室纵向应变和应变率独立相关[47, 48]。此外,T2DM患者使用胰高血糖素样肽-1(glucagon-like peptide-1, GLP-1)受体激动剂[49]、钠-葡萄糖共转运体2抑制剂(sodium-dependent glucose transporters 2 inhibitors, SGLT2-i)[50]等降糖药物,可降低其EAT厚度。这进一步表明无创成像技术评估的EAT有助于糖尿病患者的靶向治疗,预防心肌损伤。

       在1型糖尿病(type 1 diabetes, T1DM)的病理进程中,胰腺β细胞的功能逐渐丧失,导致胰岛素的绝对性匮乏,T1DM患者的脂肪组织代谢发生变化,具体表现为脂肪合成的减少与脂肪分解的增加,导致其体重减轻。然而,值得注意的是,相较于非糖尿病患者,T1DM患者通过超声心动图测量的心外膜脂肪厚度增加,心律失常风险增加,且与年龄、性别、体重、身高、BMI等因素无关[51, 52]

       HSU等[53]对370名患者(209名正常葡萄糖耐量、82名糖尿病前期、79名糖尿病)行CMR检查,观察到糖尿病前期和糖尿病患者EAT的水平升高,并与心脏结构和舒张功能的不良改变有关,可能是糖尿病性心肌病早期发病的潜在机制之一。此外,有研究表明,使用超声心动图测得的糖尿病慢性心力衰竭患者的EAT厚度与心功能分级呈正相关[54]。综上所述,EAT作为心脏的“保护层”和内分泌器官,可能是DCM的潜在治疗靶点。

       目前,许多研究已证实EAT与DCM密切相关,但多为横断面研究,缺乏纵向研究来验证EAT与DCM之间的因果关系和动态变化。此外,生活方式、饮食习惯等环境因素也可能对EAT和DCM产生影响,但在现有研究中这些因素尚未得到充分考虑。因此,未来的研究方向应着重于加强纵向研究的实施,以深入验证EAT与DCM之间的因果关系及发展过程。其次,应该综合考量环境因素对EAT和DCM的潜在影响,通过细致的数据收集与分析,将这些因素纳入研究模型,以便全面地了解EAT与DCM之间的复杂关联,为制订针对性的预防和治疗策略提供更科学的依据。

2.4 EAT与COVID-19相关心血管疾病

       自2019年秋季由SARS-CoV-2病毒引发的COVID-19疫情暴发以来,多项研究相继指出,COVID-19患者的心肌肌钙蛋白T(cardiac troponin T, cTnT)及N末端脑钠肽前体(N-terminal pro-brain natriuretic peptide, NT-proBNP)水平升高,提示存在心脏受损与应激反应[55, 56],主要表现为心肌炎、心包炎和血栓形成等[57]。EAT与心肌在解剖和功能上具有亲和性,两者有相同的微循环,这支持了新冠肺炎相关心脏损伤的病理生理。EAT的内在炎症环境可能会加剧COVID-19患者体内的炎症反应进程,进而诱发一系列严重的心血管系统并发症。此外,血管紧张素转换酶2(angiotensin- converting enzyme 2, ACE2)被广泛认为是SARS-CoV-2进入宿主细胞的受体,而ACE2减少与EAT炎症有关,因此ACE2的缺乏可能介导了心肌炎症[58]

       目前通过CT对COVID-19患者EAT定量的研究表明,较高的EAT体积和较低的EAT密度可能是COVID-19不良疾病预后(包括心血管并发症和死亡)的独立风险因素[59, 60]。SU等[61]对237例COVID-19患者进行了回顾性分析,研究结果显示,经CT量化的EAT容量较高的患者更易发生心肌受损,并且EAT是心脏损伤的独立预测因子。另有研究表明,无创成像技术评估的EAT体积可为COVID-19相关心肌损伤提供风险分层。BIHAN等[62]在调整了性别、体重指数、铁蛋白血症和肺部受累等因素后,发现通过CT测量的EAT体积与冠状病毒重症之间具有一定相关性。此外,EAT体积较大的ICU患者发生肺栓塞的风险更高[63]。因此,EAT可作为COVID-19相关心血管疾病的影像标志物,为疾病的防治发挥重要作用。

       目前关于EAT与COVID-19相关心血管疾病多为短期观察,无法全面评估EAT在患者长期预后中的作用。并且,多使用CT来量化EAT。在未来,应开展长期随访及多模态无创成像技术评估EAT,深入探究EAT变化与COVID-19相关心血管疾病之间的关系,为制订有效的预防和治疗策略提供有力的科学依据。

3 小结与展望

       综上所述,EAT的无创成像技术评估为心血管疾病的临床预测、风险评估及早期干预提供了新思路和新途径,有望在未来的心血管健康管理中发挥越来越重要的作用。但是,目前对于EAT参数的选择及用于预测心血管疾病的临界值尚缺乏共识,还需要更深入地研究,另外,还需推动针对EAT的药物研发,以期达到减缓乃至逆转心血管疾病病程进展的目的。在未来,EAT的评估有望成为临床实践的一部分,辅助临床医生识别心血管疾病的高风险个体,为患者提供更为个性化的治疗策略和预后管理建议。

[1]
TSAO C W, ADAY A W, ALMARZOOQ Z I, et al. Heart disease and stroke statistics-2023 update: a report from the American heart association[J/OL]. Circulation, 2023, 147(8): e93-e621 [2024-08-11]. https://pubmed.ncbi.nlm.nih.gov/36695182/. DOI: 10.1161/CIR.0000000000001123.
[2]
《中国心血管健康与疾病报告》编写组. 《中国心血管健康与疾病报告2022》概述[J]. 中国心血管病研究, 2023, 21(7): 577-600. DOI: 10.3969/j.issn.1672-5301.2023.07.001.
The Writing Committee of the Report on Cardiovascular Health and Diseases in China. Overview of report on cardiovascular health and diseases in China 2022[J]. Chin J Cardiovasc Res, 2023, 21(7): 577-600. DOI: 10.3969/j.issn.1672-5301.2023.07.001.
[3]
ZOICO E, RUBELE S, DE CARO A, et al. Brown and beige adipose tissue and aging[J/OL]. Front Endocrinol, 2019, 10: 368 [2024-08-11]. https://pubmed.ncbi.nlm.nih.gov/31281288/. DOI: 10.3389/fendo.2019.00368.
[4]
PABON M A, MANOCHA K, CHEUNG J W, et al. Linking arrhythmias and adipocytes: insights, mechanisms, and future directions[J/OL]. Front Physiol, 2018, 9: 1752 [2024-08-11]. https://pubmed.ncbi.nlm.nih.gov/30568603/. DOI: 10.3389/fphys.2018.01752.
[5]
XU X X, ZHOU Q N, REN Z Y, et al. Evaluation of patients with angiographically-confirmed coronary artery disease to investigate the association between epicardial fat thickness and atrial fibrillation[J/OL]. Med Sci Monit, 2022, 28: e936446 [2024-08-11]. https://pubmed.ncbi.nlm.nih.gov/35614578/. DOI: 10.12659/MSM.936446.
[6]
IACOBELLIS G, BARONI M G. Cardiovascular risk reduction throughout GLP-1 receptor agonist and SGLT2 inhibitor modulation of epicardial fat[J]. J Endocrinol Invest, 2022, 45(3): 489-495. DOI: 10.1007/s40618-021-01687-1.
[7]
TEIXEIRA B L, CUNHA P S, JACINTO A S, et al. Epicardial adipose tissue volume assessed by cardiac CT as a predictor of atrial fibrillation recurrence following catheter ablation[J/OL]. Clin Imaging, 2024, 110: 110170 [2024-08-11]. https://pubmed.ncbi.nlm.nih.gov/38696998/. DOI: 10.1016/j.clinimag.2024.110170.
[8]
JEHN S, ROGGEL A, DYKUN I, et al. Epicardial adipose tissue and obstructive coronary artery disease in acute chest pain: the EPIC-ACS study[J/OL]. Eur Heart J Open, 2023, 3(3): oead041 [2024-08-11]. https://pubmed.ncbi.nlm.nih.gov/37143611/. DOI: 10.1093/ehjopen/oead041.
[9]
WANG Z, LI J J, CHEN J W, et al. Relationship between epicardial adipose tissue volume and recurrence after ablation in premature ventricular complexes[J]. Circ J, 2024, 88(7): 1047-1054. DOI: 10.1253/circj.CJ-23-0474.
[10]
TAY J C K, YAP J. Epicardial adipose tissue: more than meets the eye[J/OL]. Int J Cardiol, 2022, 362: 174-175 [2024-08-11]. https://pubmed.ncbi.nlm.nih.gov/35533749/. DOI: 10.1016/j.ijcard.2022.05.001.
[11]
IACOBELLIS G, BIANCO A C. Epicardial adipose tissue: emerging physiological, pathophysiological and clinical features[J]. Trends Endocrinol Metab, 2011, 22(11): 450-457. DOI: 10.1016/j.tem.2011.07.003.
[12]
INCIARDI R M, CHANDRA A. Epicardial adipose tissue in heart failure: risk factor or mediator?[J]. Eur J Heart Fail, 2022, 24(8): 1357-1358. DOI: 10.1002/ejhf.2577.
[13]
CHONG B, JAYABASKARAN J, RUBAN J, et al. Epicardial adipose tissue assessed by computed tomography and echocardiography are associated with adverse cardiovascular outcomes: a systematic review and meta-analysis[J/OL]. Circ Cardiovasc Imaging, 2023, 16(5): e015159 [2024-08-11]. https://pubmed.ncbi.nlm.nih.gov/37192298/. DOI: 10.1161/CIRCIMAGING.122.015159.
[14]
EROĞLU S. How do we measure epicardial adipose tissue thickness by transthoracic echocardiography?[J]. Anatol J Cardiol, 2015, 15(5): 416-419. DOI: 10.5152/akd.2015.5991.
[15]
REQUENA-IBÁÑEZ J A, SANTOS-GALLEGO C G, RODRIGUEZ CORDERO A J, et al. Not only how much, but also how to, when measuring epicardial adipose tissue[J/OL]. Magn Reson Imaging, 2022, 86: 149-151 [2024-08-11]. https://pubmed.ncbi.nlm.nih.gov/34813891/. DOI: 10.1016/j.mri.2021.11.004.
[16]
赵世华. 磁共振应作为无创评估心脏结构和功能的金标准——2010年心血管磁共振专家共识解读[J]. 中国循环杂志, 2012, 27(z1): 90-92. DOI: 10.3969/j.issn.1000-3614.2012.z1.025.
ZHAO S H. Magnetic resonance imaging should serve as the gold standard for non-invasive assessment of cardiac structure and function: interpretation of the 2010 expert consensus document on cardiovascular magnetic resonance[J]. Chin Circul J, 2012, 27(z1): 90-92. DOI: 10.3969/j.issn.1000-3614.2012.z1.025.
[17]
LI Y F, SONG S N, SUN Y, et al. Segmentation and volume quantification of epicardial adipose tissue in computed tomography images[J]. Med Phys, 2022, 49(10): 6477-6490. DOI: 10.1002/mp.15965.
[18]
IACOBELLIS G. Local and systemic effects of the multifaceted epicardial adipose tissue depot[J]. Nat Rev Endocrinol, 2015, 11(6): 363-371. DOI: 10.1038/nrendo.2015.58.
[19]
SAHASRABUDDHE A V, PITALE S U, SIVANESAN S D, et al. Pathogenic gene expression of epicardial adipose tissue in patients with coronary artery disease[J]. Indian J Med Res, 2020, 151(6): 554-561. DOI: 10.4103/ijmr.IJMR_1374_18.
[20]
GRUZDEVA O V, DYLEVA Y A, BELIK E V, et al. Relationship between epicardial and coronary adipose tissue and the expression of adiponectin, leptin, and interleukin 6 in patients with coronary artery disease[J/OL]. J Pers Med, 2022, 12(2): 129 [2024-08-11]. https://pubmed.ncbi.nlm.nih.gov/35207618/. DOI: 10.3390/jpm12020129.
[21]
HIRATA Y, TABATA M, KUROBE H, et al. Coronary atherosclerosis is associated with macrophage polarization in epicardial adipose tissue[J]. J Am Coll Cardiol, 2011, 58(3): 248-255. DOI: 10.1016/j.jacc.2011.01.048.
[22]
NARYZHNAYA N V, KOSHELSKAYA O A, KOLOGRIVOVA I V, et al. Production of reactive oxygen species by epicardial adipocytes is associated with an increase in postprandial glycemia, postprandial insulin, and a decrease in serum adiponectin in patients with severe coronary atherosclerosis[J/OL]. Biomedicines, 2022, 10(8): 2054 [2024-08-11]. https://pubmed.ncbi.nlm.nih.gov/36009601/. DOI: 10.3390/biomedicines10082054.
[23]
WU Y, ZHANG A J, HAMILTON D J, et al. Epicardial fat in the maintenance of cardiovascular health[J]. Methodist Debakey Cardiovasc J, 2017, 13(1): 20-24. DOI: 10.14797/mdcj-13-1-20.
[24]
TEKAYA A B, MEHMLI T, MRAD I B, et al. Increased epicardial adipose tissue thickness correlates with endothelial dysfunction in spondyloarthritis[J]. Clin Rheumatol, 2022, 41(10): 3017-3025. DOI: 10.1007/s10067-022-06261-5.
[25]
WANG Q P, CHI J Y, WANG C, et al. Epicardial adipose tissue in patients with coronary artery disease: a meta-analysis[J/OL]. J Cardiovasc Dev Dis, 2022, 9(8): 253 [2024-08-11]. https://pubmed.ncbi.nlm.nih.gov/36005417/. DOI: 10.3390/jcdd9080253.
[26]
ISLAS F, GUTIÉRREZ E, CACHOFEIRO V, et al. Importance of cardiac imaging assessment of epicardial adipose tissue after a first episode of myocardial infarction[J/OL]. Front Cardiovasc Med, 2022, 9: 995367 [2024-08-11]. https://pubmed.ncbi.nlm.nih.gov/36451918/. DOI: 10.3389/fcvm.2022.995367.
[27]
GAVARA J, MERENCIANO-GONZALEZ H, LLOPIS-LORENTE J, et al. Impact of epicardial adipose tissue on infarct size and left ventricular systolic function in patients with anterior ST-segment elevation myocardial infarction[J/OL]. Diagnostics, 2024, 14(4): 368 [2024-08-11]. https://pubmed.ncbi.nlm.nih.gov/38396407/. DOI: 10.3390/diagnostics14040368.
[28]
GAO Z H, ZUO Y Q, JIA L Y, et al. Association between epicardial adipose tissue density and characteristics of coronary plaques assessed by coronary computed tomographic angiography[J]. Int J Cardiovasc Imaging, 2022, 38(3): 673-681. DOI: 10.1007/s10554-021-02428-4.
[29]
MA R L, VAN ASSEN M, TIES D, et al. Focal pericoronary adipose tissue attenuation is related to plaque presence, plaque type, and stenosis severity in coronary CTA[J]. Eur Radiol, 2021, 31(10): 7251-7261. DOI: 10.1007/s00330-021-07882-1.
[30]
ZHU J, XIE Z, HUANG H, et al. Association of epicardial adipose tissue with left ventricular strain and MR myocardial perfusion in patients with known coronary artery disease[J]. J Magn Reson Imaging, 2023, 58(5): 1490-1498. DOI: 10.1002/jmri.28619.
[31]
WEI Q, CHEN Y L, YUAN D Q, et al. Chest-CT-based radiomics feature of epicardial adipose tissue for screening coronary atherosclerosis[J/OL]. Heart Vessels, 2024 [2024-08-11]. https://pubmed.ncbi.nlm.nih.gov/39540983/. DOI: 10.1007/s00380-024-02479-2.
[32]
NALLIAH C J, BELL J R, RAAIJMAKERS A J A, et al. Epicardial adipose tissue accumulation confers atrial conduction abnormality[J]. J Am Coll Cardiol, 2020, 76(10): 1197-1211. DOI: 10.1016/j.jacc.2020.07.017.
[33]
ABE I, TESHIMA Y, KONDO H, et al. Association of fibrotic remodeling and cytokines/chemokines content in epicardial adipose tissue with atrial myocardial fibrosis in patients with atrial fibrillation[J]. Heart Rhythm, 2018, 15(11): 1717-1727. DOI: 10.1016/j.hrthm.2018.06.025.
[34]
张梅青, 李越, 王秋霜, 等. 超声测量的心外膜脂肪厚度与心房颤动的相关性[J]. 中华医学超声杂志(电子版), 2017, 14(3): 186-192. DOI: 10.3877/cma.j.issn.1672-6448.2017.03.006.
ZHANG M Q, LI Y, WANG Q S, et al. The correlation of epicardial adipose tissue thickness and atrial fibrillation by echocardiography[J]. Chin J Med Ultrasound Electron Ed, 2017, 14(3): 186-192. DOI: 10.3877/cma.j.issn.1672-6448.2017.03.006.
[35]
FAN Q K, ZHAN Y G, ZHENG M Q, et al. The predictive value of epicardial fat tissue volume in the occurrence and development of atrial fibrillation: a systematic review and meta-analysis[J/OL]. Cardiol Res Pract, 2022, 2022: 2090309 [2024-08-11]. https://pubmed.ncbi.nlm.nih.gov/36213458/. DOI: 10.1155/2022/2090309.
[36]
ILYUSHENKOVA J, SAZONOVA S, POPOV E, et al. Radiomic phenotype of epicardial adipose tissue in the prognosis of atrial fibrillation recurrence after catheter ablation in patients with lone atrial fibrillation[J]. J Arrhythm, 2022, 38(5): 682-693. DOI: 10.1002/joa3.12760.
[37]
BALLATORE A, GATTI M, MELLA S, et al. Epicardial atrial fat at cardiac magnetic resonance imaging and AF recurrence after transcatheter ablation[J/OL]. J Cardiovasc Dev Dis, 2024, 11(5): 137 [2024-08-11]. https://pubmed.ncbi.nlm.nih.gov/38786958/. DOI: 10.3390/jcdd11050137.
[38]
TOMOMORI S, SUENARI K, SAIRAKU A, et al. Prolonged PR intervals are associated with epicardial adipose tissue and recurrence after catheter ablation in persistent atrial fibrillation[J]. Heart Vessels, 2024, 39(3): 232-239. DOI: 10.1007/s00380-023-02323-z.
[39]
SANG C Y, HU X Q, ZHANG D D, et al. The predictive value of left atrium epicardial adipose tissue on recurrence after catheter ablation in patients with different types of atrial fibrillation[J/OL]. Int J Cardiol, 2023, 379: 33-39 [2024-08-11]. https://pubmed.ncbi.nlm.nih.gov/36893857/. DOI: 10.1016/j.ijcard.2023.03.011.
[40]
HUBER A T, FANKHAUSER S, CHOLLET L, et al. The relationship between enhancing left atrial adipose tissue at CT and recurrent atrial fibrillation[J]. Radiology, 2022, 305(1): 56-65. DOI: 10.1148/radiol.212644.
[41]
YANG M, CAO Q Q, XU Z H, et al. Development and validation of a machine learning-based radiomics model on cardiac computed tomography of epicardial adipose tissue in predicting characteristics and recurrence of atrial fibrillation[J/OL]. Front Cardiovasc Med, 2022, 9: 813085 [2024-08-11]. https://pubmed.ncbi.nlm.nih.gov/35310976/. DOI: 10.3389/fcvm.2022.813085.
[42]
CHANG S H, CHU P H, TSAI C T, et al. Both epicardial and peri-aortic adipose tissue blunt heart rate recovery beyond body fat mass[J/OL]. Front Cardiovasc Med, 2022, 9: 939515 [2024-08-11]. https://pubmed.ncbi.nlm.nih.gov/36211580/. DOI: 10.3389/fcvm.2022.939515.
[43]
WANG Z, CHEN J W, GUO H H, et al. The relationship between epicardial adipose tissue volume on coronary computed tomography angiography and idiopathic ventricular tachycardia: a propensity score matching case-control study in Chinese population[J]. Cardiovasc Diagn Ther, 2024, 14(1): 29-37. DOI: 10.21037/cdt-23-345.
[44]
SEPEHRI SHAMLOO A, SCHOENE K, STAUBER A, et al. Epicardial adipose tissue thickness as an independent predictor of ventricular tachycardia recurrence following ablation[J]. Heart Rhythm, 2019, 16(10): 1492-1498. DOI: 10.1016/j.hrthm.2019.06.009.
[45]
WANG Z, JIAO S Q, CHEN J W, et al. The relationship between frequent premature ventricular complexes and epicardial adipose tissue volume[J/OL]. Front Endocrinol, 2023, 14: 1219890 [2024-08-11]. https://pubmed.ncbi.nlm.nih.gov/37822598/. DOI: 10.3389/fendo.2023.1219890.
[46]
GÜNEŞ H, GÜNEŞ H, TEMIZ F. The relationship between epicardial adipose tissue and insulin resistance in obese children[J]. Arq Bras Cardiol, 2020, 114(4): 675-682. DOI: 10.36660/abc.20190197.
[47]
ZHU J, LI W J, XIE Z, et al. Relationship between epicardial adipose tissue and biventricular longitudinal strain and strain rate in patients with type 2 diabetes mellitus[J]. Acad Radiol, 2023, 30(5): 833-840. DOI: 10.1016/j.acra.2022.08.019.
[48]
HUANG S, LI Y, JIANG L, et al. Impact of type 2 diabetes mellitus on epicardial adipose tissue and myocardial microcirculation by MRI in postmenopausal women[J]. J Magn Reson Imaging, 2022, 56(5): 1404-1413. DOI: 10.1002/jmri.28121.
[49]
ZHAO N, WANG X Y, WANG Y B, et al. The effect of liraglutide on epicardial adipose tissue in type 2 diabetes[J/OL]. J Diabetes Res, 2021, 2021: 5578216 [2024-08-11]. https://pubmed.ncbi.nlm.nih.gov/34825006/. DOI: 10.1155/2021/5578216.
[50]
CINTI F, LECCISOTTI L, SORICE G P, et al. Dapagliflozin treatment is associated with a reduction of epicardial adipose tissue thickness and epicardial glucose uptake in human type 2 diabetes[J/OL]. Cardiovasc Diabetol, 2023, 22(1): 349 [2024-08-11]. https://pubmed.ncbi.nlm.nih.gov/38115004/. DOI: 10.1186/s12933-023-02091-0.
[51]
GÜNEY A Y, ŞAP F, EKLIOĞLU B S, et al. Investigation of the effect of epicardial adipose tissue thickness on cardiac conduction system in children with type 1 diabetes mellitus[J]. J Pediatr Endocrinol Metab, 2020, 33(6): 713-720. DOI: 10.1515/jpem-2020-0001.
[52]
TRABZON G, GÜNGÖR Ş, GÜLLÜ Ş D, et al. Evaluation of epicardial adipose tissue in children with type 1 diabetes[J/OL]. Pediatr Res, 2024 [2024-08-11]. https://pubmed.ncbi.nlm.nih.gov/38879626/. DOI: 10.1038/s41390-024-03319-9.
[53]
HSU J C, HUANG K C, LIN T T, et al. Epicardial adipose tissue is associated with geometry alteration and diastolic dysfunction in prediabetic cardiomyopathy[J/OL]. J Clin Endocrinol Metab, 2024: dgae400 [2024-08-11]. https://pubmed.ncbi.nlm.nih.gov/38864548/. DOI: 10.1210/clinem/dgae400.
[54]
项晓燕, 潘辑. 心外膜脂肪厚度与糖尿病慢性心力衰竭患者心功能分级的关系[J]. 中外医学研究, 2024, 22(3): 81-83. DOI: 10.14033/j.cnki.cfmr.2024.03.021.
XIANG X Y, PAN J. Relationship between epicardial fat thickness and cardiac function grading in diabetic patients with chronic heart failure[J]. Chin Foreign Med Res, 2024, 22(3): 81-83. DOI: 10.14033/j.cnki.cfmr.2024.03.021.
[55]
INCIARDI R M, LUPI L, ZACCONE G, et al. Cardiac involvement in a patient with coronavirus disease 2019 (COVID-19)[J]. JAMA Cardiol, 2020, 5(7): 819-824. DOI: 10.1001/jamacardio.2020.1096.
[56]
LALA A, JOHNSON K W, RUSSAK A J, et al. Prevalence and impact of myocardial injury in patients hospitalized with COVID-19 infection[J/OL]. medRxiv, 2020: 2020.04.20.20072702 [2024-08-11]. https://pubmed.ncbi.nlm.nih.gov/32511658/. DOI: 10.1101/2020.04.20.20072702.
[57]
WU L H, JIANG Z, MEULENDIJKS E R, et al. Atrial inflammation and microvascular thrombogenicity are increased in deceased COVID-19 patients[J/OL]. Cardiovasc Pathol, 2023, 64: 107524 [2024-08-11]. https://pubmed.ncbi.nlm.nih.gov/36649811/. DOI: 10.1016/j.carpath.2023.107524.
[58]
PATEL V B, OUDIT G Y. Response to comment on patelet Al. ACE2 deficiency worsens epicardial adipose tissue inflammation and cardiac dysfunction in response to diet-induced obesity. diabetes 2016;65: 85-95[J/OL]. Diabetes, 2016, 65(2): e3-e4 [2024-08-11]. https://pubmed.ncbi.nlm.nih.gov/26798128/. DOI: 10.2337/dbi15-0037.
[59]
ABRISHAMI A, ESLAMI V, BAHARVAND Z, et al. Epicardial adipose tissue, inflammatory biomarkers and COVID-19: is there a possible relationship?[J/OL]. Int Immunopharmacol, 2021, 90: 107174 [2024-08-11]. https://pubmed.ncbi.nlm.nih.gov/33208293/. DOI: 10.1016/j.intimp.2020.107174.
[60]
DENG M, QI Y J, DENG L P, et al. Obesity as a potential predictor of disease severity in young COVID-19 patients: a retrospective study[J]. Obesity, 2020, 28(10): 1815-1825. DOI: 10.1002/oby.22943.
[61]
SU T H, ZHONG B C, TANG C, et al. Correlation between epicardial adipose tissue and myocardial injury in patients with COVID-19[J/OL]. Front Physiol, 2024, 15: 1368542 [2024-08-11]. https://pubmed.ncbi.nlm.nih.gov/38706946/. DOI: 10.3389/fphys.2024.1368542.
[62]
BIHAN H, HEIDAR R, BELOEUVRE A, et al. Epicardial adipose tissue and severe Coronavirus Disease 19[J/OL]. Cardiovasc Diabetol, 2021, 20(1): 147 [2024-08-11]. https://pubmed.ncbi.nlm.nih.gov/34284784/. DOI: 10.1186/s12933-021-01329-z.
[63]
ROSSI A P, DONADELLO K, SCHWEIGER V, et al. Epicardial adipose tissue volume and CT-attenuation as prognostic factors for pulmonary embolism and mortality in critically ill patients affected by COVID-19[J]. Eur J Clin Nutr, 2023, 77(1): 105-111. DOI: 10.1038/s41430-022-01197-0.

上一篇 多模态影像学技术在高度近视中的研究进展
下一篇 影像组学预测肝内胆管癌微血管侵犯的研究进展
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2