分享:
分享到微信朋友圈
X
临床研究
心脏磁共振评价慢性肾脏病患者不同左心室构型的心肌组织特征
蒲倩 杨慧义 彭鹏飞 岳汛 岳书婷 邓巧 唐露 吴韬 于洋 付平 余少斌 孙家瑜

Cite this article as: PU Q, YANG H Y, PENG P F, et al. Cardiac magnetic resonance evaluation of myocardial tissue characterization of different left ventricular phenotypes in patients with chronic kidney disease[J]. Chin J Magn Reson Imaging, 2024, 15(8): 124-131.本文引用格式:蒲倩, 杨慧义, 彭鹏飞, 等. 心脏磁共振评价慢性肾脏病患者不同左心室构型的心肌组织特征[J]. 磁共振成像, 2024, 15(8): 124-131. DOI:10.12015/issn.1674-8034.2024.08.019.


[摘要] 目的 通过心脏磁共振(cardiac magnetic resonance, CMR)分析慢性肾脏病(chronic kidney disease, CKD)患者不同左心室构型的心肌应变、native T1值及T2值,研究CKD患者不同左心室构型的心肌组织特征。材料与方法 前瞻性纳入CKD患者114例和年龄性别匹配的健康对照(对照组)30例。扫描序列包括心脏电影序列、T1 mapping及T2 mapping序列。根据左心室重构指数(left ventricular remodeling index, LVRI)和左心室质量指数(left ventricular mass index, LVMI)将患者分为左心室正常几何构型(n=43)、向心性重构(n=22)、向心性左心室肥厚(left ventricular hypertrophy, LVH)(n=20)和离心性LVH(n=29)共四组。利用心脏后处理软件CVI 42测量受试者的左心室心肌应变及应变率,包括周向、径向和纵向的整体应变、收缩期整体应变率、舒张期整体应变率,以及 native T1值和T2值。分析不同左心室构型患者的心肌组织特征。采用单因素和多因素线性回归分析探讨左心室心肌应变参数、native T1值及T2值与生理变量的关系。结果 除左心室正常构型组的整体周向应变[-18.40%(3.30%)vs. -19.71%±1.66%,P=0.063]、整体径向应变(30.63%±7.03% vs. 34.07%±4.61%,P=0.324)与对照组差异无统计学意义,CKD患者的其余心肌应变参数显著低于对照组(P均<0.05)。应变分析结果显示离心性LVH组的整体径向应变(22.02 %±8.31%)最低;向心性LVH组的整体周向应变(-14.42%±3.24%)和整体纵向应变(-9.55%±2.79%)最低。应变率分析结果显示离心性LVH组的收缩期整体周向应变率[(-0.84±0.25)s-1]、舒张期整体周向应变率[(0.73±0.29)s-1]、收缩期整体径向应变率[(1.25±0.46)s-1]和舒张期整体径向应变率[(-1.18±0.50)s-1]最低;向心性LVH组的收缩期整体纵向应变率[(-0.62±0.16)s-1]和舒张期整体纵向应变率[(0.53±0.14)s-1]最低。向心性重构组的native T1值与对照组差异无统计学意义[1 285.50(85.25)ms vs.(1 262.53±38.18)ms,P=0.083];离心性LVH组的native T1值最大,显著高于对照组[(1 351.10±58.49)ms vs.(1 262.53±38.18)ms,P<0.001]。与对照组相比,四个患者组的T2值均显著升高(P均<0.05),离心性LVH组的T2值[(54.86±8.71)ms]最大。不同组CKD患者的T2值差异无统计学意义(P均>0.05)。Native T1值的独立决定因素是血红蛋白含量(校正的R2=0.216,β=-0.442,P<0.001)和血清肌酐(校正的R2=0.216,β=-0.220,P=0.010)。结论 CKD患者的心肌应变降低、native T1值及T2值增加,离心性LVH患者的心肌组织特征改变最明显。
[Abstract] Objective To analyze the myocardial strain, native T1 and T2 values of different left ventricular phenotypes in chronic kidney disease (CKD) patients by cardiac magnetic resonance (CMR), and to investigate the myocardial tissue characterization of different left ventricular phenotypes.Materials and Methods Prospective inclusion of 114 CKD patients and 30 age- and gender- matched healthy controls (control group). The scanning sequences included cardiac cine, T1 mapping and T2 mapping sequences. According to the left ventricular remodeling index (LVRI) and left ventricular mass index (LVMI), CKD patients were divided into the following four subgroups: normal geometry (n=43), concentric remodeling (n=22), concentric left ventricular hypertrophy (LVH) (n=20), and eccentric LVH (n=29). Cardiac post-processing software CVI 42 was used to measure left ventricular myocardial strain and strain rate, including global circumferential, radial and longitudinal strain, systolic global circumferential, radial and longitudinal strain rate, diastolic global circumferential, radial and longitudinal strain rate. Native T1 and T2 values were also measured. The myocardial tissue characterization of different left ventricular phenotypes was investigated. Univariate and multivariate linear regression analyses were used to explore the relationship between myocardial tissue characterization and physiological variables.Results Except for global circumferential strain [-18.40% (3.30%) vs. -19.71%±1.66%, P=0.063] and global radial strain (30.63%±7.03% vs. 34.07%±4.61%, P=0.324) in normal geometry group, other myocardial strain parameters in CKD patients were significantly lower than those in control group (all P<0.05). Strain analysis showed that the lowest global radial strain (22.02%±8.31%) was found in the eccentric LVH group. The lowest global circumferential strain (-14.42%±3.24%) and global longitudinal strain (-9.55%±2.79%) were found in the concentric LVH group. Strain rate analysis showed that eccentric LVH group had the lowest systolic global circumferential strain rate [(-0.84±0.25) s-1], diastolic global circumferential strain rate [(0.73±0.29) s-1], systolic global radial strain rate [(1.25±0.46) s-1] and diastolic global radial strain rate [(-1.18±0.50) s-1]. Concentric LVH group had the lowest systolic global longitudinal strain rate [(-0.62±0.16) s-1] and diastolic global longitudinal strain rate [(0.53±0.14) s-1]. There was no significant difference in native T1 values between concentric remodeling group and control group [1 285.50 (85.25) ms vs. (1 262.53±38.18) ms, P=0.083]. Eccentric LVH group had the largest native T1 value, which was significantly higher than that of control group [(1 351.10±58.49) ms, vs. (1 262.53±38.18) ms, P<0.001). Compared with control group, T2 values were significantly increased in all four patient subgroups (all P<0.05), and the T2 value [(54.86±8.71) ms] of eccentric LVH group was the largest. There was no significant difference in T2 values among different subgroups of CKD patients (all P>0.05). Native T1 value was independently correlated with hemoglobin content (adjusted R2=0.216, β=-0.442, P<0.001) and serum creatinine (adjusted R2=0.216, β=-0.220, P=0.010).Conclusions CKD patients have decreased myocardial strain and increased native T1 and T2 values. The changes of myocardial tissue characterization are most obvious in patients with eccentric LVH.
[关键词] 慢性肾脏病;磁共振成像;T1 mapping;特征追踪技术;心肌应变;左心室肥厚;左心室构型
[Keywords] chronic kidney disease;magnetic resonance imaging;T1 mapping;feature tracking technology;myocardial strain;left ventricular hypertrophy;left ventricular phenotypes

蒲倩 1   杨慧义 1, 2   彭鹏飞 1   岳汛 1, 2   岳书婷 1, 2   邓巧 1   唐露 1   吴韬 1   于洋 3   付平 3   余少斌 3   孙家瑜 1*  

1 四川大学华西医院放射科,成都 610041

2 川北医学院附属医院放射科,南充 637000

3 四川大学华西医院肾脏内科,成都 610041

通信作者:孙家瑜,E-mail:cardiac_wchscu@163.com

作者贡献声明:孙家瑜设计了本研究的方案,对稿件重要内容进行了修改,并获得了四川省科技计划项目的资助;蒲倩起草和撰写了稿件,获取分析并解释了本研究的数据;杨慧义、彭鹏飞、岳汛、岳书婷、邓巧、唐露、吴韬、于洋、付平、余少斌收集、分析及解释本研究的数据,并对稿件的重要内容进行了修改;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 四川省科技计划项目 2020YFS0123
收稿日期:2024-04-22
接受日期:2024-08-05
中图分类号:R445.2  R542.2 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2024.08.019
本文引用格式:蒲倩, 杨慧义, 彭鹏飞, 等. 心脏磁共振评价慢性肾脏病患者不同左心室构型的心肌组织特征[J]. 磁共振成像, 2024, 15(8): 124-131. DOI:10.12015/issn.1674-8034.2024.08.019.

0 引言

       心血管疾病是慢性肾脏病(chronic kidney disease, CKD)患者最常见的死亡原因[1, 2]。在CKD疾病进展过程中,心室容量和压力状态的改变、肾性贫血、肾素-血管紧张素系统的激活、缺血、动脉粥样硬化、矿物质代谢紊乱、尿毒症毒素、氧化应激和细胞因子的上调会引起心脏重构,导致左心室肥厚(left ventricular hypertrophy, LVH)、心肌纤维化和水肿等,进而引起左心室收缩和舒张功能衰竭[3, 4, 5]。左心室重构在心脏病的发生、发展和预后中起重要作用,对患者的生活质量和生存期产生严重影响[6, 7, 8]。有研究提出用左心室重构指数(left ventricular remodeling index, LVRI)来评估左心室重构,其值等于左心室舒张末期质量除以左心室舒张末期容积[9]。根据LVRI和左心室质量指数(left ventricular mass index, LVMI)可将左心室构型分为正常构型、向心性重构、向心性LVH和离心性LVH四种类型[10]。已有证据表明离心性LVH比向心性LVH对CKD患者预后的影响更大,离心性LVH与患者的心血管死亡率密切相关[9]。因此,早期发现CKD患者心脏结构和功能异常对其预后具有重要意义[11]

       超声心动图是评价心脏结构和功能的常用方法,但超声图像分辨率较低,测量结果易受操作者经验影响[10, 12]。心脏磁共振(cardiac magnetic resonance, CMR)是无创评估心室容积、心肌运动功能和心肌组织特征的参考标准[13, 14]。CMR常用的左心室射血分数(left ventricular ejection fraction, LVEF)是评价心脏功能的重要指标,但LVEF不能准确反映心脏的收缩和舒张功能,无法发现心脏早期亚临床功能障碍[15]。CMR特征追踪技术基于平衡稳态自由进动电影序列量化心肌应变,能早期发现心脏运动功能下降[16, 17, 18]。既往研究表明在CKD患者LVEF正常时,患者的整体心肌应变已经降低[16, 19]。CMR native T1值与心肌纤维化、水肿或浸润有关;T2值与心肌水肿、损伤和炎症有关[20]。T1 mapping和T2 mapping可进行无创、无对比剂的心肌特征分析,有助于更好地对心肌疾病进行风险分层[21, 22]

       既往研究表明随着CKD分期增加,CMR测量的心肌应变降低、native T1值及T2值增加[23]。目前,关于CKD患者不同左心室构型的心肌组织特征尚不清楚。针对LVH、心肌纤维化和水肿的治疗可能因不同左心室构型表现出不同疗效,了解不同左心室构型的心肌组织特征有助于为CKD患者制订个体化治疗方案[5, 24]。因此,本研究将利用CMR成像评估CKD患者不同左心室构型的心肌组织特征,探讨CKD患者的心血管危险因素,为CKD患者的管理和治疗提供影像学参考。

1 材料与方法

       本研究遵循《赫尔辛基宣言》,已获得四川大学华西医院伦理审查委员会批准[批件号:2022年审(1347)号]。所有受试者均签署知情同意书。

1.1 研究对象

       前瞻性连续纳入于2023年5月至2024年6月在四川大学华西医院肾脏内科接受治疗的CKD患者,同时在医院体检人群中招募年龄及性别匹配的健康对照(对照组)。CKD患者的纳入标准:(1)符合CKD诊断标准[25];(2)年龄≥18岁;(3)临床和影像资料完整。CKD患者的排除标准:(1)心律失常;(2)已知心血管病史,如冠心病、心肌炎和心脏瓣膜病等;(3)磁共振检查禁忌证,如体内安装金属植入物及幽闭恐惧症等;(4)未能配合完成检查或图像伪影严重无法分析;(5)患有糖尿病;(6)已经进入血液透析的CKD患者。当男性LVMI≥81 g/m2或女性LVMI≥61 g/m2时,认为患者LVH[9]。当LVRI>0.89时,可认为LVRI异常[9]。根据LVRI和LVMI,将左心室构型分为四种类型。正常构型:没有LVH且LVRI正常;向心性重构:没有LVH但LVRI增加;向心性LVH:LVH伴LVRI增加;离心性LVH:LVH但LVRI正常[9]。按照不同左心室构型将CKD患者分为正常构型、向心性重构、向心性LVH和离心性LVH共四组。对照组纳入标准:(1)年龄≥18岁;(2)CMR及心电图检查无异常;(3)既往无心脏病史;(4)无高血压、糖尿病、高血脂、慢性肝肾损伤和肿瘤等慢性疾病;(5)无药物、毒物滥用或依赖史。对照组排除标准:(1)磁共振检查禁忌证;(2)各种原因未能配合完成检查;(3)图像伪影严重无法分析。

       记录所有受试者的一般资料,包括年龄、性别、体质量指数、体表面积、心率、血压、吸烟史、饮酒史以及既往病史。记录CKD患者的实验室生化指标,主要包括血红蛋白、血清肌酐和估算肾小球滤过率(estimated glomerular filtration rate, eGFR)等。

1.2 图像采集方案

       图像采集使用GE(Signa Premier, GE Healthcare, USA)3.0 T磁共振成像设备,采用16通道胸腹部相控阵线圈,同时配合心电门控和呼吸门控。扫描前训练受试者于呼气末屏气,取仰卧位。图像采集参考2020年更新的标准化CMR成像协议[26]。扫描序列包括心脏电影序列、T1 mapping和T2 mapping序列(图1)。采用快速平衡稳态自由进动序列采集长轴(二、三、四腔)及短轴(左心室基底部到心尖)的心脏电影图像。电影序列扫描参数如下:层厚8 mm,层间距0 mm,扫描视野360~400 mm2,体素1.8 mm×1.4 mm×8.0 mm,回波时间1.1 ms,重复时间3.1 ms,翻转角65°,时间分辨率38~45 ms。T1 mapping和T2 mapping图像采集层面包括短轴(基底部、中间部、心尖部)和四腔长轴切面。采用改良Look-Locker反转恢复梯度回波序列采集T1 mapping图像。T1 mapping序列扫描参数如下:层厚8 mm,层间距0 mm,扫描视野360~400 mm2,体素1.8 mm×1.8 mm×8.0 mm,回波时间1.2 ms,重复时间2.8 ms,翻转角35°。采用不同T2准备时间的单次激发平衡稳态自由进动序列采集T2 mapping图像。T2 mapping序列扫描参数如下:层厚8 mm,层间距0 mm,扫描视野360~400 mm2,体素1.9 mm×1.9 mm×8.0 mm,回波时间9.2 ms。

图1  4例不同左心室构型的慢性肾脏病患者的心脏磁共振图像。伪彩图的不同颜色代表组织的不同纵向(T1 mapping图像)或横向(T2 mapping图像)弛豫时间。1A:左心室正常构型患者的短轴电影图像;1B:左心室正常构型患者的T1 mapping图像;1C:左心室正常构型患者的T2 mapping图像;1D:左心室向心性重构患者的短轴电影图像;1E:左心室向心性重构患者的T1 mapping图像;1F:左心室向心性重构患者的T2 mapping图像;1G:向心性左心室肥厚患者的短轴电影图像;1H:向心性左心室肥厚患者的T1 mapping图像;1I:向心性左心室肥厚患者的T2 mapping图像;1J:离心性左心室肥厚患者的短轴电影图像;1K:离心性左心室肥厚患者的T1 mapping图像;1L:离心性左心室肥厚患者的T2 mapping图像。
Fig. 1  Cardiac magnetic resonance images of four chronic kidney disease patients with different left ventricular phenotypes. The different colors of the pseudo-color maps represent different longitudinal (T1 mapping) or transverse (T2 mapping) relaxation times of the tissue. 1A: Short-axis cine image of a patient with normal geometry; 1B: T1 mapping image of a patient with normal geometry; 1C: T2 mapping image of a patient with normal geometry; 1D: Short-axis cine image of a patient with left ventricular concentric remodeling; 1E: T1 mapping image of a patient with left ventricular concentric remodeling; 1F: T2 mapping image of a patient with left ventricular concentric remodeling; 1G: Short-axis cine image of a patient with concentric left ventricular hypertrophy; 1H: T1 mapping image of a patient with concentric left ventricular hypertrophy; 1I: T2 mapping image of a patient with concentric left ventricular hypertrophy; 1J: Short-axis cine image of a patient with eccentric left ventricular hypertrophy; 1K: T1 mapping image of a patient with eccentric left ventricular hypertrophy; 1L: T2 mapping image of a patient with eccentric left ventricular hypertrophy.

1.3 图像后处理分析

       图像分析均在后处理软件CVI 42(Circle Cardiovascular Imaging Inc., Canada)5.14.2版本进行。软件自动勾画收缩末期和舒张末期的心内膜及心外膜轮廓,并由具有3年以上后处理经验的主管技师进行手动调整。

1.3.1 左心室结构和功能分析

       将短轴电影图像导入软件的Function SAX模块,逐层勾画收缩末期及舒张末期左心室心内膜及心外膜轮廓,得到左心室结构和功能参数,包括左心室舒张末期容积指数(left ventricular end-diastolic volume index, LVEDVI)、左心室收缩末期容积指数(left ventricular end-systolic volume index, LVESVI)、LVEF、LVMI和左心室最大室壁厚度(left ventricular maximum wall thickness, LVMWT)。

1.3.2 左心室应变及应变率分析

       将长轴和短轴电影图像导入Strain模块,勾画长轴和短轴电影舒张末期的心内膜及心外膜轮廓,软件自动追踪得到左心室整体周向应变(global circumferential strain, GCS)、整体径向应变(global radial strain, GRS)、整体纵向应变(global longitudinal strain, GLS)、收缩期整体周向应变率(systolic global circumferential strain rate, sGCSR)、收缩期整体径向应变率(systolic global radial strain rate, sGRSR)、收缩期整体纵向应变率(systolic global longitudinal strain rate, sGLSR)、舒张期整体周向应变率(diastolic global circumferential strain rate, dGCSR)、舒张期整体径向应变率(diastolic global radial strain rate, dGRSR)、舒张期整体纵向应变率(diastolic global longitudinal strain rate, dGLSR)(图2)。

图2  左心室应变伪彩示例图。红色线条代表左心室心内膜轮廓,绿色线条代表左心室心外膜轮廓,左心室应变伪彩图的不同颜色代表不同的应变参数。2A:左心室短轴电影图像;2B:二腔长轴电影图像;2C:三腔长轴电影图像;2D:四腔长轴电影图像。
Fig. 2  Left ventricular strain pseudo-color example. The red lines represent the left ventricular endocardium contour, and the green lines represent the left ventricular epicardium contour. The color of the left ventricular strain images varies with different strain parameters. 2A: Left ventricular short-axis cine image; 2B: Two-chamber long-axis cine image; 2C: Three-chamber long-axis cine image; 2D: Four-chamber long-axis cine image.

1.3.3 Native T1 mapping和T2 mapping的分析

       在软件的T1 mapping和T2 mapping模块中,软件自动勾画三层短轴图像的心内膜及心外膜轮廓,并进行手动调整,排除乳头肌、肌小梁和血池,得到整体native T1 值和T2值。

1.4 重复性分析

       图像分析由2位具有3年以上CMR图像后处理经验的主管技师完成。图像中所有与受试者有关的信息被隐藏且两位技师互不知晓对方的测量结果。一位技师对所有图像进行后处理分析,并在一个月后随机选取20名研究对象,再次测量CMR参数进行组内一致性分析。另一位技师测量这20名研究对象的CMR参数进行组间一致性分析。

1.5 统计学分析

       采用PASS 23.0.2(NCSS, LLC, Kaysville, USA)软件估算样本量,通过查询相关文献[9]得到本研究主要观测指标的平均值和标准差,假定本研究每组样本含量相等,检验水准α取值为双侧0.05,检验功效1-β取值为0.90,失访率为20%。采用IBM SPSS 26.0(IBM Corp., Armonk, USA)进行统计分析。定量资料的正态性检验采用Shapro-Wilk检验。采用均数±标准差表示正态分布的定量资料,中位数(四分位间距)表示非正态分布的定量资料,频数(百分数)表示定性资料。符合正态分布的多组数据比较采用单因素方差分析,不符合正态分布的多组数据比较采用Kruskal-Wallis H检验。协方差分析用于校正不同左心室构型之间有统计学差异的变量。多组定性资料的比较使用卡方检验。正态分布的定量资料采用Pearson相关分析,不符合正态分布的资料采用Spearman相关性分析。采用单因素和多因素线性回归分析CMR参数与生理变量的关系。选取所有单因素线性回归结果P<0.10且无共线性的变量,进入多元逐步回归模型。通过计算组内相关系数(intra-class correlation coefficient, ICC)来验证组内一致性和组间一致性。ICC≥0.75代表一致性好,0.50≤ICC<0.75代表一致性中等,ICC<0.50代表一致性差。双侧P<0.05为差异具有统计学意义。

2 结果

2.1 一般资料

       样本量估算结果显示,总样本量最低应为69例,每组样本量最低应为14例。本研究共纳入114例CKD患者[年龄(50.11±13.09)岁,男性占61%]和30例健康对照[年龄(46.37±16.88)岁,男性占43%]。对照组与CKD患者组的年龄(F=1.254,P=0.269)、性别(χ2=3.176,P=0.075)相匹配。按照左心室构型分组,将CKD患者分为正常构型(n=43)、向心性重构(n=22)、向心性LVH(n=20)和离心性LVH(n=29)。表1展示了所有研究对象的详细资料。5组研究对象的身高、体质量、体质量指数、体表面积和心率差异均无统计学意义(P均>0.05)。向心性LVH和离心性LVH组的收缩压均显著大于对照组(P均<0.05),离心性LVH组的舒张压显著大于对照组(P=0.026)。在血液生化指标中,离心性LVH组的血红蛋白含量显著低于正常构型组和向心性重构组(P均<0.05)。

表1  所有研究对象的一般资料
Tab. 1  The general information of all study subjects

2.2 左心室结构和功能参数比较

       不同左心室构型患者和对照组的左心室结构和功能比较如表2所示。左心室正常构型组的LVEDVI和LVESVI与对照组差异无统计学意义(P均>0.05);向心性LVH和离心性LVH组的LVEDVI和LVESVI显著增大(P均<0.05)。与对照组相比,除离心性LVH组的LVEF显著降低外(P<0.001),其余组的LVEF差异无统计学意义(P均>0.05)。与对照组相比,CKD患者的LVMWT均有不同程度的增厚,其中向心性LVH组的LVMWT最厚(P<0.001)。

表2  对照组与不同左心室构型患者的CMR参数比较
Tab. 2  Comparison of CMR parameters between healthy controls and patients with different left ventricular phenotypes

2.3 左心室应变及应变率参数比较

       对照组和不同组CKD患者的左心室应变及应变率如表2所示,协变量校正后的参数如表3所示。除正常构型组与对照组的GCS(P=0.063)、GRS(P=0.324)差异无统计学意义外,其余患者组的GCS、GRS和GLS显著降低(P均<0.05)。在四个患者组中,正常构型组的GCS、GRS和GLS显著高于向心性LVH组和离心性LVH组(P均<0.05);离心性LVH组的GRS最低;向心性LVH组的GCS和GLS最低。

       离心性LVH组的sGCSR显著低于向心性重构组(P=0.001),而其余组的sGCSR差异无统计学意义(P均>0.05)。离心性LVH组的dGCSR显著低于对照组(P=0.001)。离心性LVH组的sGRSR显著低于对照组、正常构型组和向心性重构组(P均<0.05)。向心性LVH组和离心性LVH组的dGRSR显著低于对照组(P均<0.05)。所有患者组中,离心性LVH组的sGRSR和dGRSR最低。与对照组相比,CKD患者的sGLSR、dGLSR显著降低(P均<0.05),其中向心性LVH组的sGLSR和dGLSR最低。

表3  协变量校正后的CMR参数比较
Tab. 3  CMR parameters after correction for covariates

2.4 Native T1值及T2 值的比较

       与对照组相比,向心性重构组的native T1值无明显改变(P=0.083),但正常构型、向心性LVH和离心性LVH组的native T1值显著增高(P均<0.05),其中离心性LVH组的native T1值最大。所有CKD患者组的T2值大于对照组(P均<0.05),但四个患者组的T2值差异无统计学意义(P>0.05)。

2.5 相关性分析

       在CKD患者中,LVMI与GRS呈负相关(r=-0.591,P<0.001);LVMI与GCS、GLS、native T1值呈正相关(r=0.618、0.567、0.354,P均<0.001)。LVRI与GLS呈正相关(r=0.371,P<0.001)。

2.6 Native T1值、T2值的独立决定因素

       单因素回归分析显示,native T1值与血红蛋白(R2=0.182,P<0.001)、血清肌酐(R2=0.035,P=0.046)、钙(R2=0.042,P=0.029)、镁(R2=0.045,P=0.023)含量相关;T2值与尿素氮(R2=0.118,P<0.001)、eGFR(R2=0.181,P<0.001)、血清肌酐(R2=0.163,P<0.001)、镁(R2=0.040,P=0.032)、无机磷(R2=0.108,P<0.001)含量相关。在多因素分析中,native T1值与血红蛋白(校正的R2=0.216,β=-0.442,P<0.001)和血清肌酐(校正的R2=0.216,β=-0.220,P=0.010)含量独立相关;T2值与eGFR独立相关(校正的R2=0.174,β=-0.426,P<0.001)。

2.7 可重复性分析

       所有CMR参数的观察者内ICC(95%置信区间)值为0.983(0.959~0.993)至0.996(0.990~0.998),观察者间ICC值为0.944(0.866~0.977)至0.994(0.985~0.998),组内一致性和组间一致性好。

3 讨论

       本研究讨论了CKD患者不同左心室构型(正常构型、向心性重构、向心性LVH和离心性LVH)的心肌应变、native T1值及T2值。CKD患者的左心室应变及应变率降低,native T1值及T2值增大。本研究CKD患者不同左心室构型的心肌应变有不同程度降低,native T1值有不同程度增加。离心性LVH组的心肌整体应变最低,native T1值最大,这提示离心性LVH组的心肌纤维化程度最严重,运动功能降低最明显。本研究不同左心室构型的T2值差异无统计学意义,这提示不能用T2值区分CKD患者不同左心室构型的心肌水肿程度差异。

3.1 CKD患者左心室结构和功能的改变

       本研究向心性LVH组中男性占比较高,可能是因为性别是心肌损伤和重塑的重要影响因素[27]。QI等[28]指出CKD患者的LVEDVI和LVESVI大于对照组,且随着eGFR的降低,左心室腔将增大。本研究发现LVH组的LVEDVI和LVESVI增大;左心室向心性重构组的LVEDVI和LVESVI有降低趋势,其LVEDVI显著低于正常构型组,这提示并非所有CKD患者的LVEDVI和LVESVI都增加,不同左心室构型患者有不同改变。分析整个CKD人群时,LVEDVI和LVESVI增加可能是因为左心室向心性重构患者占比低或其LVEDVI和LVESVI降低不明显。CKD患者均有不同程度的左心室壁增厚,这是CKD患者最常见的特征[29, 30]。本研究CKD患者的LVMI显著增大,这与以往的研究结果一致[23]。CKD患者的LVH可能与心脏后负荷增加导致心肌细胞代偿性增生有关。研究[11, 15]指出虽然CKD患者的LVEF仍在正常范围,但其心脏已经出现亚临床功能障碍。本研究所有亚组的LVEF均在正常范围内,这可能与心脏强大的代偿作用有关。虽然CKD患者的LVEF有下降趋势,但仅离心性LVH组的LVEF显著降低,这可能提示离心性LVH患者左心室代偿不足,心脏运动功能明显降低。

3.2 CKD患者左心室心肌运动功能的改变

       通过评估心肌应变参数来衡量心肌形变,可检测心脏运动功能改变[17, 31]。一项研究纳入了不同分期的CKD患者,结果表明心肌应变将随疾病进展逐渐降低[23]。DETTORI等[16]发现随着CKD严重程度增加,患者的心肌应变明显降低,这种相关性独立于LVEF、心肌瘢痕程度、高血压、糖尿病、年龄、性别和LVMI。RANKIN等[32]指出GLS与全因死亡率相关,可使用GLS代替LVEF诊断终末期肾病患者的心脏功能障碍。本研究显示CKD患者的心肌运动功能受损,即使左心室为正常几何构型,该组患者的GLS、sGLSR和dGLSR仍低于对照组。在本研究中,非LVH组的应变及应变率大于LVH组,这提示LVH组心肌运动功能下降更严重。离心性LVH组的sGCSR、dGCSR、GRS、sGRSR、dGRSR最低,这提示离心性LVH患者心内膜下环形心肌纤维损伤更严重;向心性LVH组的GLS、sGLSR、dGLSR最低,这提示向心性LVH患者心内膜下纵向心肌纤维损伤更严重[9]。整体应变参数均与LVMI相关,这提示LVH和LVMI增加可能会损害心肌运动功能,也可能是心肌运动障碍引起心肌代偿性增厚。一项研究指出CKD患者的血压与LVMI和LVH具有强相关性,对血压的控制可能对减轻终末期器官损伤具有重要价值[33]

3.3 CKD患者native T1和T2值的改变

       本研究发现左心室向心性重构组的native T1值与对照组差异无统计学意义,这提示左心室向心性重构可能是一种良性改变,通过代偿机制来降低左心室负荷[9]。LVH组的native T1值大于非LVH组,这提示LVH患者的心肌纤维化严重。离心性LVH组的native T1值最大,提示离心性LVH患者心肌纤维化更严重,这将导致离心性LVH患者更低的心肌应变。ARCARI等[34]发现CKD患者、高血压患者和肥厚型心肌病患者的native T1值升高,这提示三组患者均存在病理性重塑;CKD患者的T2值特异性升高,这可能是心肌内液的重要作用。本研究发现CKD患者的T2值均大于对照组,但不同左心室构型患者的T2值差异无统计学意义,不能简单用T2值来区分不同左心室构型患者的心肌水肿程度差异。异常的native T1值并不完全与心肌纤维化相关,心肌水肿也会对native T1值产生影响[4]。虽然本研究CKD患者的native T1值增大,但不能排除心肌水肿对native T1值的影响。在多因素分析中,本研究的native T1值与血红蛋白含量有关,这提示贫血可能对心肌组织产生负面影响。ALANSARI等[35]观察到血红蛋白含量与LVRI呈正相关,提示血红蛋白含量与左心室重构有关。Native T1值与血清肌酐独立相关,T2值与eGFR独立相关,这提示肾功能受损将会导致心脏组织特征改变。既往研究也表明某些血液生化指标的变化与CKD患者心肌组织特征和预后有关[36]。综上所述,CMR提供了无创评价CKD患者心肌组织特征的影像学标志物,有助于改善患者的临床管理和预后。

3.4 局限性

       本研究具有一定局限性。首先,本研究的样本量较小且是一项单中心研究,需要更大规模的研究来证实本研究的发现。第二,本研究未对CKD患者病程、治疗等因素进行详细分析,在未来研究中我们将更全面分析可能对结果造成影响的因素。此外,心脏重构是一个渐进的动态过程,未来需要进一步随访来验证CKD患者不同左心室构型的结局。

4 结论

       本研究进一步证明了CMR心肌应变参数、native T1值及T2值可以评估CKD患者心肌运动功能和组织特征。CKD患者的心肌应变降低、native T1值及T2值增加。不同左心室构型的CKD患者心肌组织特征改变程度不同,其中,离心性LVH患者的心肌组织特征改变最明显。

[1]
SARNAK M J, AMANN K, BANGALORE S, et al. Chronic kidney disease and coronary artery disease [J]. J Am Coll Cardiol, 2019, 74(14): 1823-1838. DOI: 10.1016/j.jacc.2019.08.1017.
[2]
ZOCCALI C, MALLAMACI F, ADAMCZAK M, et al. Cardiovascular complications in chronic kidney disease: a review from the European Renal and Cardiovascular Medicine Working Group of the European Renal Association[J]. Cardiovasc Res, 2023, 119(11): 2017-2032. DOI: 10.1093/cvr/cvad083.
[3]
LIN L, XIE Q X, ZHENG M, et al. Identification of cardiovascular abnormalities by multiparametric magnetic resonance imaging in end-stage renal disease patients with preserved left ventricular ejection fraction[J]. Eur Radiol, 2021, 31(9): 7098-7109. DOI: 10.1007/s00330-021-07752-w.
[4]
RANKIN A J, MANGION K, LEES J S, et al. Myocardial changes on 3T cardiovascular magnetic resonance imaging in response to haemodialysis with fluid removal[J/OL]. J Cardiovasc Magn R, 2021, 23(1): 125 [2024-04-22]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8580743/. DOI: 10.1186/s12968-021-00822-4.
[5]
CANAUD B, KOOMAN J P, SELBY N M, et al. Dialysis-induced cardiovascular and multiorgan morbidity[J]. Kidney Int Rep, 2020, 5(11): 1856-1869. DOI: 10.1016/j.ekir.2020.08.031.
[6]
KAESLER N, BABLER A, FLOEGE J, et al. Cardiac remodeling in chronic kidney disease[J/OL]. Toxins, 2020, 12(3): 161 [2024-04-22]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7150902/. DOI: 10.3390/toxins12030161.
[7]
LEI Y, TONG J, SU Y, et al. Risk factors of left ventricular diastolic dysfunction in maintenance hemodialysis patients[J/OL]. BMC Nephrol, 2023, 24(1): 166 [2024-04-22]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10258965/. DOI: 10.1186/s12882-023-03220-3.
[8]
HSU H-C, TADE G, ROBINSON C, et al. Associations of traditionally determined left ventricular mass indices and hemodynamic and non-hemodynamic components of cardiac remodeling with diastolic and systolic function in patients with chronic kidney disease[J/OL]. J Clin Med, 2023, 12(13): 4211 [2024-04-22]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10342723/. DOI: 10.3390/jcm12134211.
[9]
JIN S Q, WANG F, TIAN Z X, et al. Myocardial injury in peritoneal dialysis patients assessed by multiparametric MRI: relationship with left ventricular phenotypes [J/OL]. J Magn Reson Imaging, 2024 [2024-04-22]. https://pubmed.ncbi.nlm.nih.gov/38311966/. DOI: 10.1002/jmri.29261.
[10]
TADIC M, SALA C, CARUGO S, et al. Myocardial strain and left ventricular geometry: a meta-analysis of echocardiographic studies in systemic hypertension[J]. J Hypertens, 2021, 39(11): 2297-2306. DOI: 10.1097/HJH.0000000000002911.
[11]
HAN X Y, HE F F, CAO Y K, et al. Associations of B-type natriuretic peptide (BNP) and dialysis vintage with CMRI-derived cardiac indices in stable hemodialysis patients with a preserved left ventricular ejection fraction[J]. Int J Cardiovasc Imaging, 2020, 36(11): 2265-2278. DOI: 10.1007/s10554-020-01942-1.
[12]
ZOCCALI C, MARK P B, SARAFIDIS P, et al. Diagnosis of cardiovascular disease in patients with chronic kidney disease[J]. Nat Rev Nephrol, 2023, 19(11): 733-746. DOI: 10.1038/s41581-023-00747-4.
[13]
MANGION K, MCDOWELL K, MARK P B, et al. Characterizing cardiac involvement in chronic kidney disease using CMR-a systematic review[J/OL]. Curr Cardiovasc Imag, 2018, 11(1): 2 [2024-04-22]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5818546/. DOI: 10.1007/s12410-018-9441-9.
[14]
PALAMUTHUSINGAM D, REYALDEEN R, JOHNSON D W, et al. Assessment of cardiac structure and function in kidney failure: understanding echocardiography and magnetic resonance imaging for the nephrologist[J]. Int Urol Nephrol, 2021, 53(4): 699-712. DOI: 10.1007/s11255-020-02610-y.
[15]
MARK P B, MANGION K, RANKIN A J, et al. Left ventricular dysfunction with preserved ejection fraction: the most common left ventricular disorder in chronic kidney disease patients[J]. Clin Kidney J, 2022, 15(12): 2186-2199. DOI: 10.1093/ckj/sfac146.
[16]
DETTORI R, MILZI A, LUBBERICH R K, et al. Chronic kidney disease is related to impaired left ventricular strain as assessed by cardiac magnetic resonance imaging in patients with ischemic cardiomyopathy[J/OL]. Clin Res Cardiol, 2023 [2024-04-22]. https://pubmed.ncbi.nlm.nih.gov/38078956/. DOI: 10.1007/s00392-023-02346-6.
[17]
KAMMERLANDER A A. Feature tracking by cardiovascular magnetic resonance imaging: the new gold standard for systolic function?[J]. JACC Cardiovasc Imaging, 2020, 13(4): 948-950. DOI: 10.1016/j.jcmg.2019.11.015.
[18]
DöRR K, KAMMERLANDER A, LAURIERO F, et al. Effect of etelcalcetide versus alfacalcidol on left ventricular function and feature-tracking cardiac magnetic resonance imaging in hemodialysis—a post-hoc analysis of a randomized, controlled trial[J/OL]. J Cardiovasc Magn R, 2023, 25(1): 62 [2024-04-22]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10626812/. DOI: 10.1186/s12968-023-00975-4.
[19]
TAWFIK A M, SOBH D M, GADELHAK B, et al. Right ventricular strain analysis by tissue tracking cardiac magnetic resonance imaging in pediatric patients with end-stage renal disease[J]. J Thorac Imaging, 2024, 39(1): 49-56. DOI: 10.1097/RTI.0000000000000716.
[20]
ARCARI L, ENGEL J, FREIWALD T, et al. Cardiac biomarkers in chronic kidney disease are independently associated with myocardial edema and diffuse fibrosis by cardiovascular magnetic resonance[J/OL]. J Cardiovasc Magn R, 2021, 23(1): 71 [2024-04-22]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8183054/. DOI: 10.1186/s12968-021-00762-z.
[21]
HAYER M K, RADHAKRISHNAN A, PRICE A M, et al. Defining myocardial abnormalities across the stages of chronic kidney disease: a cardiac magnetic resonance imaging study[J]. JACC Cardiovasc Imaging, 2020, 13(11): 2357-2367. DOI: 10.1016/j.jcmg.2020.04.021.
[22]
VALBUENA-LóPEZ S C, CAMASTRA G, CACCIOTTI L, et al. Cardiac imaging biomarkers in chronic kidney disease[J/OL]. Biomolecules, 2023, 13(5): 773 [2024-04-22]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10216582/. DOI: 10.3390/biom13050773.
[23]
JIA X, HAN X, WANG Y, et al. Cardiac magnetic resonance imaging parameters show association between myocardial abnormalities and severity of chronic kidney disease[J/OL]. Front Cardiovasc Med, 2022, 9: 1053122 [2024-04-22]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9712745/. DOI: 10.3389/fcvm.2022.1053122.
[24]
VIRANI S S, NEWBY L K, ARNOLD S V, et al. 2023 AHA/ACC/ACCP/ASPC/NLA/PCNA guideline for the management of patients with chronic coronary disease: a report of the American heart association/american college of cardiology joint committee on clinical practice guidelines[J/OL]. Circulation, 2023, 148(9): e9-e119 [2024-04-22]. https://pubmed.ncbi.nlm.nih.gov/37471501/. DOI: 10.1161/CIR.0000000000001168.
[25]
KOVESDY C P. Epidemiology of chronic kidney disease: an update 2022[J]. Kidney Int Suppl, 2022, 12(1): 7-11. DOI: 10.1016/j.kisu.2021.11.003.
[26]
KRAMER C M, BARKHAUSEN J, BUCCIARELLI-DUCCI C, et al. Standardized cardiovascular magnetic resonance imaging (CMR) protocols: 2020 update[J/OL]. J Cardiovasc Magn R, 2020, 22(1): 17 [2024-04-22]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7038611/. DOI: 10.1186/s12968-020-00607-1.
[27]
SCHULZ-MENGER J, ABDEL-ATY H, RUDOLPH A, et al. Gender-specific differences in left ventricular remodelling and fibrosis in hypertrophic cardiomyopathy: insights from cardiovascular magnetic resonance[J]. Eur J Heart Fail, 2008, 10(9): 850-854. DOI: 10.1016/j.ejheart.2008.06.021.
[28]
QI L, ZHI B B, ZHANG J, et al. Defining biventricular abnormalities by cardiac magnetic resonance in pre-dialysis patients with chronic kidney disease[J]. Kidney Dis, 2023, 9(4): 277-284. DOI: 10.1159/000529526.
[29]
CHEN C, LIU L L, LIU S R, et al. 24-h central pressure is a valuable predictor for left ventricular hypertrophy in non-dialysis patients with chronic kidney disease[J]. Hypertens Res, 2024, 47(6): 1697-1706. DOI: 10.1038/s41440-024-01654-2.
[30]
ZHANG T Y, AN D A, ZHOU H, et al. Texture analysis of native T1 images as a novel method for non-invasive assessment of heart failure with preserved ejection fraction in end-stage renal disease patients[J]. Eur Radiol, 2023, 33(3): 2027-2038. DOI: 10.1007/s00330-022-09177-5.
[31]
STROMP T A, SPEAR T J, HOLTKAMP R M, et al. Quantitative gadolinium-free cardiac fibrosis imaging in end stage renal disease patients reveals a longitudinal correlation with structural and functional decline[J/OL]. Sci Rep-UK, 2018, 8: 16972 [2024-04-22]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6242893/. DOI: 10.1038/s41598-018-35394-4.
[32]
RANKIN A J, ZHU L K, MANGION K, et al. Global longitudinal strain by feature-tracking cardiovascular magnetic resonance imagingpredicts mortality in patients with end-stage kidney disease[J]. Clin Kidney J, 2021, 14(10): 2187-2196. DOI: 10.1093/ckj/sfab020.
[33]
MISKULIN D C, JIANG H, GUL A, et al. Comparison of dialysis unit and home blood pressures: an observational cohort study[J]. Am J Kidney Dis, 2021, 78(5): 640-648. DOI: 10.1053/j.ajkd.2021.04.013.
[34]
ARCARI L, HINOJAR R, ENGEL J, et al. Native T1 and T2 provide distinctive signatures in hypertrophic cardiac conditions - Comparison of uremic, hypertensive and hypertrophic cardiomyopathy[J/OL]. Int J Cardiol, 2020, 306: 102-108 [2024-04-22]. https://pubmed.ncbi.nlm.nih.gov/32169347/. DOI: 10.1016/j.ijcard.2020.03.002.
[35]
ALANSARI H, WALD R, DEVA D P, et al. Relationships between cardiac structural and functional assessment by cardiac MRI and hemoglobin in end-stage renal disease[J]. J Nephrol, 2021, 34(5): 1561-1563. DOI: 10.1007/s40620-021-01123-w.
[36]
TADE G, HSU H-C, WOODIWISS A J, et al. Uric acid, ferritin, albumin, parathyroid hormone and gamma-glutamyl transferase concentrations are associated with uremic cardiomyopathy characteristics in non-dialysis and dialysis chronic kidney disease patients[J/OL]. Int J Nephrol Renov, 2022,15: 353-369 [2024-04-22]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9741815/. DOI: 10.2147/ijnrd.S389539.

上一篇 基于Kaiser评分临床-多参数MRI诊断模型在乳腺良恶性病变鉴别诊断中的价值
下一篇 基于瘤内和瘤周影像组学模型预测肝细胞癌微血管侵犯的临床应用价值:一项多中心研究
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2