分享:
分享到微信朋友圈
X
综述
功能MRI定量评估局部进展期直肠癌新辅助放化疗后病理完全缓解研究进展
杨澳 周鹏

Cite this article as: YANG A, ZHOU P. Progress of quantitative prediction of the pathologic complete response after neoadjuvant chemoradiotherapy for locally advanced rectal cancer with functional MRI[J]. Chin J Magn Reson Imaging, 2024, 15(7): 210-215.本文引用格式:杨澳, 周鹏. 功能MRI定量评估局部进展期直肠癌新辅助放化疗后病理完全缓解研究进展[J]. 磁共振成像, 2024, 15(7): 210-215. DOI:10.12015/issn.1674-8034.2024.07.035.


[摘要] 新辅助放化疗(neoadjuvant chemoradiotherapy, nCRT)可降低局部进展期直肠癌(locally advanced rectal cancer, LARC)患者的局部复发率,提高保肛率。部分患者在nCRT后可达到病理完全缓解(pathologic complete response, pCR),这类患者采取“等待观察”策略,可避免手术导致的相关并发症。功能磁共振成像(functional magnetic resonance imaging, fMRI)从细胞水平反映肿瘤微环境结构及功能的改变,较常规MRI可更为准确地评估LARC患者对nCRT的反应。本文围绕扩散加权成像(diffusion-weighted imaging, DWI)及其衍生序列和灌注成像定量评估LARC患者nCRT后pCR研究进展予以综述,比较了DWI、体素内不相干运动(intravoxel incoherent motion, IVIM)、拉伸指数模型(stretched exponential model, SEM)、扩散峰度成像(diffusion kurtosis imaging, DKI)、动态对比增强磁共振成像(dynamic contrast-enhanced MRI, DCE-MRI)和基于人工智能的预测模型在当前研究中的优势与不足,并为未来的研究方向提供了线索和思路,旨在为准确识别pCR的LARC患者提供较为可靠的定量指标。
[Abstract] Neoadjuvant chemoradiotherapy (nCRT) could reduce the local recurrence rate and improve the anus-preserving rate in patients with locally advanced rectal cancer (LARC). Some patients can achieve pathologic complete response (pCR) after nCRT, who will be take "watch and wait" strategy, and the patients could be avoid the complications caused by surgery. Functional magnetic resonance imaging (fMRI) can more accurately assess patients' response to nCRT than conventional MRI by reflecting changes in the structure and function of the tumor microenvironment at the cellular level. In this paper, we review the research progress on the quantitative evaluation of pCR after nCRT by diffusion-weighted imaging (DWI) and its derived sequences and perfusion imaging in patients with LARC, compare the advantages and disadvantages of DWI, intravoxel incoherent motion (IVIM), stretched exponential model (SEM), diffusion kurtosis imaging (DKI), dynamic contrast-enhanced MRI (DCE-MRI), and artificial intelligence-based prediction models in the current research, and provide clues and ideas for future research directions, aiming to provide relative reliable quantitative indicators for accurately identifying patients with LARC who achieve pCR.
[关键词] 局部进展期直肠癌;新辅助放化疗;病理完全缓解;功能磁共振成像;磁共振成像
[Keywords] locally advanced rectal cancer;neoadjuvant chemoradiotherapy;pathologic complete response;functional magnetic resonance imaging;magnetic resonance imaging

杨澳 1, 2   周鹏 2*  

1 电子科技大学医学院,成都 610051

2 四川省肿瘤临床医学研究中心,四川省肿瘤医院•研究所,四川省癌症防治中心,电子科技大学附属肿瘤医院影像科,成都 610041

通信作者:周鹏,E-mail:penghyzhou@126.com

作者贡献声明:周鹏拟定本综述的思路和框架,指导撰写稿件,并对重点内容进行修改,获得了四川省科技计划项目的资助;杨澳起草和撰写稿件,查阅分析相关参考文献并进行归纳总结;全体作者都同意最后的修改稿发表,都同意对本研究的所有方面负责,确保本综述的准确性和诚信。


基金项目: 四川省科技计划项目 2022YFSY0006,2021YFG0125
收稿日期:2024-03-01
接受日期:2024-06-26
中图分类号:R445.2  R735.37 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2024.07.035
本文引用格式:杨澳, 周鹏. 功能MRI定量评估局部进展期直肠癌新辅助放化疗后病理完全缓解研究进展[J]. 磁共振成像, 2024, 15(7): 210-215. DOI:10.12015/issn.1674-8034.2024.07.035.

0 引言

       2020年全球癌症统计报告显示,我国结直肠癌发病率和死亡率分别占全部恶性肿瘤的第2和第5位,且多数患者在确诊时已处于局部进展期[1]。中国结直肠癌诊疗规范(2023年版)推荐术前影像学分期T3~T4期和(或)淋巴结转移的局部进展期直肠癌(locally advanced rectal cancer, LARC)患者行新辅助放化疗(neoadjuvant chemoradiotherapy, nCRT)或新辅助化疗[2],这有利于降低局部复发率,提高根治性手术切除率。在接受nCRT的患者中,大约有4.2%~21.3%[3]患者可达到病理完全缓解(pathologic complete response, pCR),根据Dworak肿瘤消退分级[4, 5](tumor regression grade, TRG),pCR被定义为无肿瘤细胞残留,只有纤维化。有研究表明达到pCR的患者在接受全直肠系膜切除术(total mesorectal excision, TME)后并不能进一步改善预后,反而会出现泌尿生殖系紊乱及肠道功能失调等并发症[6, 7, 8],所以这类患者可以考虑“等待观察”的治疗策略[9]。MRI具有较好的软组织分辨率和多参数成像等特点,可准确地评估直肠癌肿块的大小、浸润的深度、邻近器官的受累情况及远处转移等[10],但LARC患者nCRT后肿瘤细胞密度的减低早于形态学改变,换而言之,肿瘤形态学没有变化,但并不意味着细胞学没有改变[2]。常规MRI仅能基于形态学改变评估LARC患者对nCRT的疗效,未能从细胞学角度微观反映肿瘤对治疗的反应。功能磁共振成像(functional magnetic resonance imaging, fMRI)可在细胞学水平反映肿瘤的生理和生物学特征,从而广泛应用于LARC患者nCRT后的疗效评价[10]。达到pCR的LARC患者除了发生肿瘤体积缩小外,还存在肿瘤细胞活性及密度的减低。fMRI通过定量参数来反映水分子的扩散,从而推测肿瘤组织的密度、灌注等病理生理信息,但不同的fMRI序列获取的定量参数不同,目前尚缺少较为可靠的定量指标在nCRT前预测pCR患者。因此,本文就LARC患者nCRT前fMRI定量评估pCR研究进展予以综合阐述。

1 扩散加权成像

       扩散加权成像(diffusion-weighted imaging, DWI)是一种基于水分子的无规则布朗运动来评估活体组织中细胞外间隙水分子运动差异的功能成像手段,肿瘤组织有着较高的细胞密度,导致细胞外间隙相对较窄,水分子扩散受限[11]。DWI通过表观扩散系数(apparent diffusion coefficient, ADC)来量化活体组织内水分子的运动状态。水分子扩散受限,DWI图像上呈高信号,ADC值较低。在肿瘤诊断与疗效评估中,ADC值可被近似认为与肿瘤细胞密度呈负相关而与细胞外间隙呈正相关[12, 13, 14, 15]。对nCRT敏感的患者在治疗后肿瘤首先发生局部微环境的改变,例如肿瘤细胞膜破裂,使得细胞外间隙相对增大,自由水增多,扩散加快,导致ADC值升高,因此可通过测量nCRT前后的ADC值(preADC和postADC)及其变化值[ΔADC%=(postADC-preADC)/preADC×100%]对nCRT疗效作出早期评估[16]

       有研究表明ADC值是LARC患者nCRT前疗效预测的潜在因子[17, 18, 19, 20],CHEN等[21]在一项荟萃分析中进一步指出ΔADC%能够可靠筛地查出pCR的LARC患者,原因可能是放化疗导致肿瘤细胞坏死在pCR组表现更为彻底,因此ΔADC%值更高。LIANG等[22]基于肿瘤全容积的直方图分析发现,在nCRT前,pCR组ADC值的平均值、中位数值均低于非pCR组,这可能是因为在治疗前较高的细胞密度往往和较好的组织灌注有关,这更有利于化疗药物到达病灶,肿瘤对治疗也更敏感。但传统DWI图像的空间分辨率有限,不利于准确地勾画病灶。YANG等[23]利用分段读出平面回波成像技术获得高分辨的DWI图像,显著提高了ADC值在术前筛查pCR患者的诊断性能。综上,ADC值粗略地反映了肿瘤细胞密度,或可成为预测pCR患者的可靠预测因子,未来的研究中可结合其他信号激励或采集技术提高图像空间分辨率,以准确测量病灶详细的扩散特性[24]

2 体素内不相干运动成像

       活体组织中水分子的运动包括了细胞内、细胞外间隙水分子的运动,为了将活体组织中微循环灌注从水分子扩散中分离出来,准确地反映肿瘤内部的微循环灌注和水分子真实的组织扩散率,LE BIHAN等[25]提出了体素内不相干运动(intravoxel incoherent motion, IVIM)成像原理,即采用多个b值拟合及双指数模型同时获得微循环灌注和水分子扩散相关参数。绝大多数研究采用分段非线性最小二乘法拟合,b值阈值为200 s/mm2,通过对多个b值进行拟合可得到IVIM定量参数D、D*及f[26]。D表示真扩散系数,是由水分子无规则的布朗运动引起的纯扩散运动;D*表示伪扩散系数,是由微循环灌注导致的假扩散运动;f表示微血管容积分数,代表了微循环灌注相关扩散所占比例。

       有研究显示与灌注相关参数(D*和f)以及基于单指数模型计算的ADC值相比,ΔD%值能更准确地筛查pCR的LARC患者,提示D值或可成为LARC患者nCRT前疗效预测的潜在因子[27, 28, 29, 30]。HU等[27]还发现pCR组治疗前的灌注相关参数D*和f高于非pCR组,提示原发灶血管化程度及灌注水平较高的患者更容易达到pCR。灌注相关参数D*和f反映了组织中微循环灌注所占的比例,较高的D*和f值暗示组织的高灌注和高水平氧供,但IVIM灌注相关参数(D*和f)在既往研究中的可重复性欠佳[31, 32, 33],原因可能肿瘤的血管生成较为复杂,并且D*和f值容易受到噪声和组织T2弛豫时间的影响。综上,IVIM通过双指数模型及多b值拟合可同时定量描述组织的扩散和灌注相关信息。其中D值排除了生理灌注效应,相对真实地反映了组织内水分子的扩散状态,在反映细胞密度方面较ADC值更为准确[26],或可成为LARC患者nCRT前疗效预测的潜在因子,而灌注相关参数 (D*和f)代表了肿瘤血管化程度及灌注水平等生物学特点,也可在一定程度上反映肿瘤对nCRT的敏感性。

3 拉伸指数模型

       为了描述活体组织体素内质子池中不同的扩散指数,BENNETT等[34]提出了拉伸指数模型(stretched exponential model, SEM),即通过高b值(一般大于1200 s/mm2)拟合反映活体组织中的水分子的扩散特点,用扩散分布系数(distributed diffusion coefficient, DDC)表示体素内平均扩散率,通过异质性指数(alpha, α)来表示单指数形式信号衰减的偏差,DDC值被认为是包含多指数衰减特性的若干ADC值的加权和,反映了多指数衰减的特点并代表了体素内的平均弥散率。α值通过描述体素内水分子扩散率的异质性从而反映组织的复杂程度,其取值范围在0~1之间,α值越低,病灶成分越复杂[35]

       SEM模型目前已经应用于其他肿瘤的疗效评价。ALMUTLAQ等[36]比较了SEM模型和IVIM模型预测乳腺癌患者对新辅助化疗疗效的价值,发现α值在早期即可识别pCR患者。ZHANG等[37]在预测晚期宫颈癌患者同步放化疗的疗效中发现应答组的α值较高而DDC值较低,并且DDC值的预测效能及一致性均最佳。CHAKHOYAN等[38]使用SEM模型评估胶质母细胞瘤患者对放化疗的反应,结果显示放化疗导致DDC值显著升高,且治疗前的DDC值和ADC值高度相关。但目前关于SEM在LARC患者nCRT前疗效评估中的研究较少。LIANG等[22]发现在nCRT前,pCR组的DDC值低于非pCR组。DDC值可被近似看作ADC值,但SEM模型的拟合度更佳,计算的DDC值更能准确地描述组织扩散[39]。ZHU等[40]研究显示在nCRT后α值均有不同程度的升高,且pCR组升高的幅度更大。这可能是因为达到pCR的患者由于肿瘤坏死,代之以纤维化,组成成分相对简单,因此α值更高。上述研究结果表明SEM模型可同时提供水分子扩散和组织异质性等方面的信息,并且SEM模型计算的参数可重复性良好,但未来的研究仍需要进一步证实SEM模型评估LARC患者对nCRT疗效的价值。

4 扩散峰度成像

       传统的DWI模型是基于水分子扩散符合高斯分布的假设,而在活体组织中,水分子的扩散由于受到细胞膜、细胞器等结构的限制表现为非高斯分布,扩散峰度成像(diffusion kurtosis imaging, DKI)是一种基于非高斯分布模型探查水分子扩散特性的技术,该技术引入了平均峰度(mean kurtosis, MK)和平均扩散率(mean diffusion, MD)来量化真实水分子扩散位移与理想的高斯分布水分子扩散间的偏离,进而来表示水分子扩散的受限程度以及扩散的不均质性[41]。MD是校正后的表观扩散系数,没有非高斯偏差,反映了体素内水分子的平均扩散率;MK代表水分子在各个扩散梯度方向上的扩散峰度的平均值,是最具特征的DKI参数,其大小取决于组织微观结构的复杂程度,MK值越大,表示组织内水分子扩散的非高斯性越显著,即组织微观结构越复杂[42, 43]。YANG等[44]比较了DWI、IVIM模型和DKI模型评价LARC患者对nCRT疗效的价值,结果显示ADC值、灌注相关参数(D*和f)和MD值均能准确地预测pCR患者,其中MD值的诊断效能最优,提示DKI模型能更准确地反映肿瘤组织内水分子的扩散运动。LI等[45]基于肿瘤全容积的直方图分析,比较了DWI和DKI模型预测LARC患者对nCRT疗效的价值,结果显示和MK值、ADC值相比,MD值的诊断效能更好,且MD平均值(MDmean)的变化值[ΔMDmean%=(postMDmean-preMDmean)/preMDmean×100%]的诊断效能最好,可重复性最佳。BATES等[46]研究显示MD值能在治疗前预测TRG分级,进而对患者进行危险分层。上述研究结果表明MD值可能是LARC患者nCRT治疗前疗效预测的潜在因子,在nCRT后,除了发生肿瘤细胞密度减低,细胞外间隙增大等变化以外,还存在液化坏死和纤维化等,此时水分子的扩散仍表现为非高斯分布,所以DKI更能相对真实地反映组织微环境的复杂性。但DKI扫描所需要的b值更高,这会导致图像信噪比(signal-to-noise ratio, SNR)降低,甚至高估MK值,并且上述研究纳入的样本相对较少,因此DKI预测LARC患者nCRT后疗效的价值有待进一步证实。

5 动态对比增强MRI

       动态对比增强MRI(dynamic contrast-enhanced MRI, DCE-MRI)是一种用于评估微循环灌注及毛细血管通透性等状态的定量技术,通过定量分析对比剂在肿瘤血管内和血管外细胞外间隙(extravascular extracellular space, EES)的扩散分布,从而揭示肿瘤的血流动力学特征[47, 48]。DCE-MRI常用的定量参数有容积转移常数(Ktrans)、速率常数(Kep)、血管外细胞外容积分数(Ve)。Ktrans表示对比剂从血浆转移到血管外细胞外间隙的速率,代表了微血管血流状态及其通透性;Kep表示对比剂由血管外细胞外间隙回流到血浆的灌注参数;Ve表示单位体积内EES所占的容积分数。

       CIOLINA等[49]研究显示nCRT前Ktrans值较高的患者更容易达到pCR,并认为Kep值和直肠癌的组织学分级呈负相关,证实了DCE-MRI预测肿瘤侵袭性和nCRT疗效的价值,可能的原因是Ktrans值较高的组织其毛细血管灌注及血管通透性更佳,这有利于氧气及化疗药物的输送,使得肿瘤对放化疗更敏感;同时,肿瘤血管化程度和肿瘤的侵袭性密切相关,分化较好的肿瘤一般内部血管更加成熟,可以进行有效的物质交换,相反,分化较差的肿瘤往往血管生成较为复杂,导致局部灌注及氧供下降。ZOU等[50]发现pCR组的Ktrans值下降更明显,基于Ktrans的纹理分析进一步指出二阶纹理特征中的相关性(correlation)预测pCR患者的诊断效能最佳,证实了DCE-MRI衍生参数预测pCR患者的价值。由于达到pCR的肿瘤主要表现为大量纤维化,毛细血管结构被破坏,因此Ktrans值下降的更加明显,而纹理分析的优势在于可以获取肿瘤异质性相关的定量参数,从而揭示肿瘤内部的异质性。但YEO等[51]发现DCE-MRI的直方图参数与nCRT的疗效无关,PHAM等[52]在DWI基础上联合DCE-MRI预测LARC对nCRT的疗效,结果显示DCE-MRI并不能提高DWI识别pCR患者的诊断效能。上述研究结果表明DCE-MRI可通过定量分析微循环灌注水平来评估LARC患者nCRT的疗效,但肿瘤的血管生成较为复杂,并且Ktrans值易受到血压、全身血流灌注等因素的影响[53],这使Ktrans值的可重复性欠佳,并且使用对比剂有可能出现过敏反应以及一定程度的肾功能损害,这也部分限制了DCE-MRI的临床应用。

6 基于功能磁共振成像的人工智能预测模型

       随着人工智能(artificial intelligence, AI)在医学领域的发展及广泛应用,基于医学图像的人工智能模型在疾病诊断、预后评估及疗效预测等方面取得了巨大的进步[54]。目前建模常用的算法包括了逻辑回归、随机森林、支持向量机、决策树、核方法及神经网络等,MRI作为直肠癌早期诊断和疗效评价的主要影像学手段之一,基于MRI的AI算法在直肠癌领域的应用也逐渐增多[55]

       ZHANG等[56]基于T2WI和DKI图像,利用深度学习建模来预测pCR的LARC患者,提高了影像科医生制订决策的准确性。SHIN等[57]基于T2WI和DWI图像,利用影像组学建模筛查pCR的LARC患者,模型的诊断效能优于影像科医生的诊断效能。在另一项研究中[58],作者基于多模态MRI影像数据比较了五种机器学习方法(决策树、随机森林、支持向量机、逻辑回归、自适应提升)建立的模型预测LARC患者对nCRT疗效的性能,结果显示支持向量机建立的模型诊断效能最优,证实了AI在帮助临床指导决策制订方面的潜力。上述研究表明了AI在识别pCR患者方面的价值,但目前大多数研究缺乏外部验证,模型的稳定性和泛化能力有待进一步提高,未来还需要多中心、大样本的研究来提高模型的临床价值。

7 总结与展望

       由于不同患者对nCRT的敏感性不同,达到pCR的患者或可免于手术,避免手术相关并发症,对nCRT抵抗的患者需及时调整治疗方案,所以及时识别pCR患者尤为重要。常规DWI通过单指数拟合可粗略反映水分子的扩散,而基于常规DWI的衍生序列则在一定程度上对DWI进行了补充和完善:IVIM解决了低b值下水分子扩散受到灌注的影响,DKI解决了高b值下水分子扩散不符合高斯分布的影响,SEM通过高b值拟合反映了组织的复杂程度。但DWI衍生序列的参数计算依赖于b值的选择,提高b值可以提高病灶的检出率,但也同时会降低图像的SNR,影响病灶的准确勾画;增加b值的数目可以提高模型的拟合性能,所测的参数可重复性更佳,但同时也延长了扫描时间,限制了其在临床中的应用,因此,未来的研究需要优化b值的选择。DCE-MRI通过定量分析对比剂在组织中的分布,间接反映了肿瘤组织的血管生成和灌注水平,亦可用于评价肿瘤侵袭性及预测肿瘤对治疗的反应。上述fMRI提供了组织中细胞密度、灌注水平及代谢状态等微观信息,有助于鉴别放疗导致的纤维化和残余的肿瘤细胞,可为评价肿瘤治疗疗效提供定量依据。但目前大多数研究属于回顾性研究,目前仍缺乏统一的成像标准和量化疗效的定量指标,未来的研究在提高病灶检出率的同时也要提高图像质量,规范扫描参数,这有利于精确地勾画病灶,所测得的定量参数也具备更好的可重复性。人工智能与fMRI的结合或许可提高上述模型的预测效能及稳定性,但未来仍需要大规模的、多中心性的、前瞻性的研究来泛化模型,提高模型的稳定性和可重复性。

[1]
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
[2]
中华人民共和国国家卫生健康委员会, 中华医学会肿瘤学分会. 中国结直肠癌诊疗规范(2023年版)[J]. 中华外科杂志, 2023, 61(8): 617-644. DOI: 10.3760/cma.j.cn112139-20230603-00222.
National Health Commission of the People′s Republic of China, Chinese Society of Oncology. Chinese Protocol of Diagnosis and Treatment of Colorectal Cancer (2023 edition)[J]. Chin J Surg, 2023, 61(8): 617-644. DOI: 10.3760/cma.j.cn112139-20230603-00222.
[3]
KASI A, ABBASI S, HANDA S, et al. Total neoadjuvant therapy vs standard therapy in locally advanced rectal cancer: a systematic review and meta-analysis[J/OL]. JAMA Netw Open, 2020, 3(12): e2030097 [2024-06-10]. http://pubumed.ncbi.nlm.nih.gov/33326026/. DOI: 10.1001/jamanetworkopen.2020.30097.
[4]
KANG B H, SONG C, KANG S B, et al. Nomogram for predicting the pathological tumor response from pre-treatment clinical characteristics in rectal cancer[J]. Anticancer Res, 2020, 40(4): 2171-2177. DOI: 10.21873/anticanres.14177.
[5]
KOKAINE L, GARDOVSKIS A, GARDOVSKIS J. Evaluation and predictive factors of complete response in rectal cancer after neoadjuvant chemoradiation therapy[J/OL]. Medicina, 2021, 57(10): 1044 [2024-06-10]. http://pubumed.ncbi.nlm.nih.gov/34684080/. DOI: 10.3390/medicina57101044.
[6]
AL-RASHID F, ROBITAILLE S, LIBERMAN A S, et al. Trajectory of change of low anterior resection syndrome over time after restorative proctectomy for rectal adenocarcinoma[J]. Tech Coloproctol, 2022, 26(3): 195-203. DOI: 10.1007/s10151-021-02561-1.
[7]
CELENTANO V, COHEN R, WARUSAVITARNE J, et al. Sexual dysfunction following rectal cancer surgery[J]. Int J Colorectal Dis, 2017, 32(11): 1523-1530. DOI: 10.1007/s00384-017-2826-4.
[8]
GRASS J K, PERSIANI R, TIRELLI F, et al. Robotic versus transanal total mesorectal excision in sexual, anorectal, and urinary function: a multicenter, prospective, observational study[J]. Int J Colorectal Dis, 2021, 36(12): 2749-2761. DOI: 10.1007/s00384-021-04030-5.
[9]
CERDAN-SANTACRUZ C, SÃO JULIÃO G P, VAILATI B B, et al. Watch and wait approach for rectal cancer[J/OL]. J Clin Med, 2023, 12(8): 2873 [2024-06-10]. http://pubumed.ncbi.nlm.nih.gov/37109210/. DOI: 10.3390/jcm12082873.
[10]
KALISZ K R, ENZERRA M D, PASPULATI R M. MRI evaluation of the response of rectal cancer to neoadjuvant chemoradiation therapy[J]. Radiographics, 2019, 39(2): 538-556. DOI: 10.1148/rg.2019180075.
[11]
YACHEVA A, DARDANOV D, ZLATAREVA D. The multipurpose usage of diffusion-weighted MRI in rectal cancer[J/OL]. Medicina, 2023, 59(12): 2162 [2024-06-10]. http://pubumed.ncbi.nlm.nih.gov/38138265/. DOI: 10.3390/medicina59122162.
[12]
CHUNG S R, CHOI Y J, SUH C H, et al. Diffusion-weighted magnetic resonance imaging for predicting response to chemoradiation therapy for head and neck squamous cell carcinoma: a systematic review[J]. Korean J Radiol, 2019, 20(4): 649-661. DOI: 10.3348/kjr.2018.0446.
[13]
PARTRIDGE S C, ZHANG Z, NEWITT D C, et al. Diffusion-weighted MRI findings predict pathologic response in neoadjuvant treatment of breast cancer: the ACRIN 6698 multicenter trial[J]. Radiology, 2018, 289(3): 618-627. DOI: 10.1148/radiol.2018180273.
[14]
ZHAO D W, FAN W J, MENG L L, et al. Comparison of the pre-treatment functional MRI metrics' efficacy in predicting Locoregionally advanced nasopharyngeal carcinoma response to induction chemotherapy[J/OL]. Cancer Imaging, 2021, 21(1): 59 [2024-06-10]. http://pubumed.ncbi.nlm.nih.gov/34758876/. DOI: 10.1186/s40644-021-00428-0.
[15]
REIG B, LEWIN A A, DU L D, et al. Breast MRI for evaluation of response to neoadjuvant therapy[J]. Radiographics, 2021, 41(3): 665-679. DOI: 10.1148/rg.2021200134.
[16]
NAPOLETANO M, MAZZUCCA D, PROSPERI E, et al. Locally advanced rectal cancer: qualitative and quantitative evaluation of diffusion-weighted magnetic resonance imaging in restaging after neoadjuvant chemo-radiotherapy[J]. Abdom Radiol, 2019, 44(11): 3664-3673. DOI: 10.1007/s00261-019-02012-4.
[17]
ZHAO M J, ZHAO L H, YANG H, et al. Apparent diffusion coefficient for the prediction of tumor response to neoadjuvant chemo-radiotherapy in locally advanced rectal cancer[J/OL]. Radiat Oncol, 2021, 16(1): 17 [2024-06-10]. http://pubumed.ncbi.nlm.nih.gov/33472660/. DOI: 10.1186/s13014-020-01738-6.
[18]
JIMÉNEZ DE LOS SANTOS M E, REYES-PÉREZ J A, SANDOVAL-NAVA R M, et al. The apparent diffusion coefficient is a useful biomarker in predicting treatment response in patients with locally advanced rectal cancer[J/OL]. Acta Radiol Open, 2020, 9(9): 2058460120957295 [2024-06-10]. http://pubumed.ncbi.nlm.nih.gov/32974055/. DOI: 10.1177/2058460120957295.
[19]
AMODEO S, ROSMAN A S, DESIATO V, et al. MRI-based apparent diffusion coefficient for predicting pathologic response of rectal cancer after neoadjuvant therapy: systematic review and meta-analysis[J]. AJR Am J Roentgenol, 2018, 211(5): W205-W216. DOI: 10.2214/AJR.17.19135.
[20]
BORASCHI P, CERVELLI R, DONATI F, et al. Response assessment of locally advanced rectal cancer after neoadjuvant chemoradiotherapy: is apparent diffusion coefficient useful on 3T magnetic resonance imaging?[J]. Colorectal Dis, 2023, 25(5): 905-915. DOI: 10.1111/codi.16483.
[21]
CHEN K, SHE H L, WU T, et al. Comparison of percentage changes in quantitative diffusion parameters for assessing pathological complete response to neoadjuvant therapy in locally advanced rectal cancer: a meta-analysis[J]. Abdom Radiol, 2021, 46(3): 894-908. DOI: 10.1007/s00261-020-02770-6.
[22]
LIANG C Y, CHEN M D, ZHAO X X, et al. Multiple mathematical models of diffusion-weighted magnetic resonance imaging combined with prognostic factors for assessing the response to neoadjuvant chemotherapy and radiation therapy in locally advanced rectal cancer[J]. Eur J Radiol, 2019, 110: 249-255. DOI: 10.1016/j.ejrad.2018.12.005.
[23]
YANG L Q, QIU M, XIA C C, et al. Value of high-resolution DWI in combination with texture analysis for the evaluation of tumor response after preoperative chemoradiotherapy for locally advanced rectal cancer[J]. AJR Am J Roentgenol, 2019, 212(6): 1279-1286. DOI: 10.2214/AJR.18.20689.
[24]
XIE S M, MASOKANO I B, LIU W G, et al. Comparing the clinical utility of single-shot echo-planar imaging and readout-segmented echo-planar imaging in diffusion-weighted imaging of the liver at 3 tesla[J/OL]. Eur J Radiol, 2021, 135: 109472 [2024-06-10]. https://doi.org/10.1016/j.ejrad.2020.109472. DOI: 10.1016/j.ejrad.2020.109472.
[25]
LE BIHAN D, BRETON E, LALLEMAND D, et al. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging[J]. Radiology, 1988, 168(2): 497-505. DOI: 10.1148/radiology.168.2.3393671.
[26]
赵佳, 李华兵. 磁共振体素内不相干运动成像在直肠癌临床诊疗中的应用进展[J]. 磁共振成像, 2021, 12(12): 108-111. DOI: 10.12015/issn.1674-8034.2021.12.026.
ZHAO J, LI H B. Application progress of intravoxel incoherent motion imaging in clinical diagnosis and treatment of rectal cancer[J]. Chin J Magn Reson Imag, 2021, 12(12): 108-111. DOI: 10.12015/issn.1674-8034.2021.12.026.
[27]
HU H B, JIANG H J, WANG S, et al. 3.0T MRI IVIM-DWI for predicting the efficacy of neoadjuvant chemoradiation for locally advanced rectal cancer[J]. Abdom Radiol, 2021, 46(1): 134-143. DOI: 10.1007/s00261-020-02594-4.
[28]
XU Q Y, XU Y Y, SUN H L, et al. Quantitative intravoxel incoherent motion parameters derived from whole-tumor volume for assessing pathological complete response to neoadjuvant chemotherapy in locally advanced rectal cancer[J]. J Magn Reson Imaging, 2018, 48(1): 248-258. DOI: 10.1002/jmri.25931.
[29]
WEN L, HOU J, ZHOU J M, et al. Intravoxel incoherent motion diffusion-weighted imaging for discriminating the pathological response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer[J/OL]. Sci Rep, 2017, 7(1): 8496 [2024-06-10]. http://pubumed.ncbi.nlm.nih.gov/28819296/. DOI: 10.1038/s41598-017-09227-9.
[30]
LI H, YUAN Y, CHEN X L, et al. Value of intravoxel incoherent motion for assessment of lymph node status and tumor response after chemoradiation therapy in locally advanced rectal cancer[J/OL]. Eur J Radiol, 2022, 146: 110106 [2024-06-10]. https://doi.org/10.1016/j.ejrad.2021.110106. DOI: 10.1016/j.ejrad.2021.110106.
[31]
LI M, XU X D, XIA K J, et al. Comparison of diagnostic performance between perfusion-related intravoxel incoherent motion DWI and dynamic contrast-enhanced MRI in rectal cancer[J/OL]. Comput Math Methods Med, 2021, 2021: 5095940 [2024-06-10]. http://pubumed.ncbi.nlm.nih.gov/34367318/. DOI: 10.1155/2021/5095940.
[32]
YANG X Y, XIAO X J, LU B L, et al. Perfusion-sensitive parameters of intravoxel incoherent motion MRI in rectal cancer: evaluation of reproducibility and correlation with dynamic contrast-enhanced MRI[J]. Acta Radiol, 2019, 60(5): 569-577. DOI: 10.1177/0284185118791201.
[33]
HONG Y, SONG G S, JIA Y P, et al. Predicting tumor deposits in patients with rectal cancer: using the models of multiple mathematical parameters derived from diffusion-weighted imaging[J/OL]. Eur J Radiol, 2022, 157: 110573 [2024-06-10]. https://doi.org/10.1016/j.ejrad.2022.110573. DOI: 10.1016/j.ejrad.2022.110573.
[34]
BENNETT K M, SCHMAINDA K M, BENNETT R T, et al. Characterization of continuously distributed cortical water diffusion rates with a stretched-exponential model[J]. Magn Reson Med, 2003, 50(4): 727-734. DOI: 10.1002/mrm.10581.
[35]
ZHANG L, YANG L Q, WEN L, et al. Noninvasively evaluating the grading of glioma by multiparametric magnetic resonance imaging[J/OL]. Acad Radiol, 2021, 28(5): e137-e146 [2024-06-10]. https://doi.org/10.1016/j.acra.2020.03.035. DOI: 10.1016/j.acra.2020.03.035.
[36]
ALMUTLAQ Z M, WILSON D J, BACON S E, et al. Evaluation of monoexponential, stretched-exponential and intravoxel incoherent motion MRI diffusion models in early response monitoring to neoadjuvant chemotherapy in patients with breast cancer-a preliminary study[J]. J Magn Reson Imaging, 2022, 56(4): 1079-1088. DOI: 10.1002/jmri.28113.
[37]
ZHANG H, ZHOU Y Y, LI J, et al. The value of DWI in predicting the response to synchronous radiochemotherapy for advanced cervical carcinoma: comparison among three mathematical models[J/OL]. Cancer Imaging, 2020, 20(1): 8 [2024-06-10]. http://pubumed.ncbi.nlm.nih.gov/31937371/. DOI: 10.1186/s40644-019-0285-6.
[38]
CHAKHOYAN A, WOODWORTH D C, HARRIS R J, et al. Mono-exponential, diffusion kurtosis and stretched exponential diffusion MR imaging response to chemoradiation in newly diagnosed glioblastoma[J]. J Neurooncol, 2018, 139(3): 651-659. DOI: 10.1007/s11060-018-2910-9.
[39]
吴慧, 吴静, 蔚纳, 等. 单指数、双指数、拉伸指数DWI模型鉴别前列腺癌与基质型前列腺增生的价值研究[J]. 磁共振成像, 2020, 11(7): 546-551. DOI: 10.12015/issn.1674-8034.2020.07.014.
WU H, WU J, YU N, et al. The value of mono-exponential, bi-exponential and stretched exponential DWI models in identifying prostate cancer and stromal prostate hyperplasia[J]. Chin J Magn Reson Imag, 2020, 11(7): 546-551. DOI: 10.12015/issn.1674-8034.2020.07.014.
[40]
ZHU H B, ZHANG X Y, ZHOU X H, et al. Assessment of pathological complete response to preoperative hemoradiotherapy by means of multiple mathematical models of diffusion-weighted MRI in locally advanced rectal cancer: a prospective single-center study[J]. J Magn Reson Imaging, 2017, 46(1): 175-183. DOI: 10.1002/jmri.25567.
[41]
ZHU L, PAN Z L, MA Q, et al. Diffusion kurtosis imaging study of rectal adenocarcinoma associated with histopathologic prognostic factors: preliminary findings[J]. Radiology, 2017, 284(1): 66-76. DOI: 10.1148/radiol.2016160094.
[42]
卢炜荣, 杨心悦, 丘清, 等. 扩散峰度成像在直肠癌中的研究进展[J]. 国际医学放射学杂志, 2022, 45(2): 184-188. DOI: 10.19300/j.2022.Z18919.
LU W R, YANG X Y, QIU Q, et al. Research progress of diffusion kurtosis imaging in rectal cancer[J]. Int J Med Radiol, 2022, 45(2): 184-188. DOI: 10.19300/j.2022.Z18919.
[43]
张家慧, 郎宁, 袁慧书. 磁共振扩散峰度成像的临床研究进展[J]. 磁共振成像, 2018, 9(4): 316-320. DOI: 10.12015/issn.167-0834.2018.04.016.
ZHANG J H, LANG N, YUAN H S. Research advances in diffusional kurtosis imaging[J]. Chin J Magn Reson Imag, 2018, 9(4): 316-320. DOI: 10.12015/issn.167-0834.2018.04.016.
[44]
YANG L Q, XIA C C, ZHAO J, et al. The value of intravoxel incoherent motion and diffusion kurtosis imaging in the assessment of tumor regression grade and T stages after neoadjuvant chemoradiotherapy in patients with locally advanced rectal cancer[J/OL]. Eur J Radiol, 2021, 136: 109504 [2024-06-10]. https://doi.org/10.1016/j.ejrad.2020.109504. DOI: 10.1016/j.ejrad.2020.109504.
[45]
LI D D, CUI Y F, HOU L N, et al. Diffusion kurtosis imaging-derived histogram metrics for prediction of resistance to neoadjuvant chemoradiotherapy in rectal adenocarcinoma: preliminary findings[J/OL]. Eur J Radiol, 2021, 144: 109963 [2024-06-10]. https://doi.org/10.1016/j.ejrad.2021.109963. DOI: 10.1016/j.ejrad.2021.109963.
[46]
BATES D D B, MAZAHERI Y, LOBAUGH S, et al. Evaluation of diffusion kurtosis and diffusivity from baseline staging MRI as predictive biomarkers for response to neoadjuvant chemoradiation in locally advanced rectal cancer[J]. Abdom Radiol, 2019, 44(11): 3701-3708. DOI: 10.1007/s00261-019-02073-5.
[47]
刘晓冬, 刘爱连, 李烨, 等. DCE-MRI及IVIM模型在直肠癌病理分级中的应用及其灌注参数的相关性[J]. 中国医学影像学杂志, 2020, 28(4): 256-259, 268. DOI: 10.3969/j.issn.1005-5185.2020.04.004.
LIU X D, LIU A L, LI Y, et al. Application of dynamic contrast-enhanced magnetic resonance imaging and intravoxel incoherent motion model in pathological grading of rectal cancer and correlation of perfusion parameters[J]. Chin J Med Imag, 2020, 28(4): 256-259, 268. DOI: 10.3969/j.issn.1005-5185.2020.04.004.
[48]
王楠, 王丽君. 体素内不相干运动和动态对比增强MRI在预测鼻咽癌放疗疗效的研究进展[J]. 磁共振成像, 2023, 14(12): 161-165. DOI: 10.12015/issn.1674-8034.2023.12.029.
WANG N, WANG L J. Research progress of intravoxel incoherent motion and dynamic contrast-enhanced MRI in radiotherapy response prediction of nasopharyngeal carcinoma[J]. Chin J Magn Reson Imag, 2023, 14(12): 161-165. DOI: 10.12015/issn.1674-8034.2023.12.029.
[49]
CIOLINA M, CARUSO D, DE SANTIS D, et al. Dynamic contrast-enhanced magnetic resonance imaging in locally advanced rectal cancer: role of perfusion parameters in the assessment of response to treatment[J]. Radiol Med, 2019, 124(5): 331-338. DOI: 10.1007/s11547-018-0978-0.
[50]
ZOU H H, YU J, WEI Y, et al. Response to neoadjuvant chemoradiotherapy for locally advanced rectum cancer: texture analysis of dynamic contrast-enhanced MRI[J]. J Magn Reson Imaging, 2019, 49(3): 885-893. DOI: 10.1002/jmri.26254.
[51]
YEO D M, OH S N, CHOI M H, et al. Histogram analysis of perfusion parameters from dynamic contrast-enhanced MR imaging with tumor characteristics and therapeutic response in locally advanced rectal cancer[J/OL]. Biomed Res Int, 2018, 2018: 3724393 [2024-06-10]. https://doi.org/10.1155/2018/3724393. DOI: 10.1155/2018/3724393.
[52]
PHAM T T, LINEY G, WONG K, et al. Multi-parametric magnetic resonance imaging assessment of whole tumour heterogeneity for chemoradiotherapy response prediction in rectal cancer[J]. Phys Imaging Radiat Oncol, 2021, 18: 26-33. DOI: 10.1016/j.phro.2021.03.003.
[53]
林凯, 罗凡, 王智文. DCE-MRI定量和半定量分析对结直肠良恶性肿瘤的鉴别诊断价值[J]. 放射学实践, 2023, 38(5): 587-592. DOI: 10.13609/j.cnki.1000-0313.2023.05.010.
LIN K, LUO F, WANG Z W. Value of DCE-MRI quantitative and semi-quantitative analysis in the differential diagnosis of benign and malignant colorectal tumors[J]. Radiol Pract, 2023, 38(5): 587-592. DOI: 10.13609/j.cnki.1000-0313.2023.05.010.
[54]
BI W L, HOSNY A, SCHABATH M B, et al. Artificial intelligence in cancer imaging: clinical challenges and applications[J]. CA Cancer J Clin, 2019, 69(2): 127-157. DOI: 10.3322/caac.21552.
[55]
朱钰, 欧阳治强, 单海燕, 等. 基于MRI的人工智能在直肠癌中的应用进展[J]. 磁共振成像, 2023, 14(9): 176-180. DOI: 10.12015/issn.1674-8034.2023.09.032.
ZHU Y, OUYANG Z Q, SHAN H Y, et al. Application progress of MRI based artificial intelligence in rectal cancer[J]. Chin J Magn Reson Imag, 2023, 14(9): 176-180. DOI: 10.12015/issn.1674-8034.2023.09.032.
[56]
ZHANG X Y, WANG L, ZHU H T, et al. Predicting rectal cancer response to neoadjuvant chemoradiotherapy using deep learning of diffusion kurtosis MRI[J]. Radiology, 2020, 296(1): 56-64. DOI: 10.1148/radiol.2020190936.
[57]
SHIN J, SEO N, BAEK S E, et al. MRI radiomics model predicts pathologic complete response of rectal cancer following chemoradiotherapy[J]. Radiology, 2022, 303(2): 351-358. DOI: 10.1148/radiol.211986.
[58]
WANG J, CHEN J J, ZHOU R Z, et al. Machine learning-based multiparametric MRI radiomics for predicting poor responders after neoadjuvant chemoradiotherapy in rectal Cancer patients[J/OL]. BMC Cancer, 2022, 22(1): 420 [2024-06-10]. http://pubumed.ncbi.nlm.nih.gov/35439946/. DOI: 10.1186/s12885-022-09518-z.

上一篇 基于磁共振的局部进展期直肠癌新辅助治疗后肿瘤退缩分级评分方法应用现状
下一篇 子宫内膜癌淋巴脉管间隙浸润的MRI研究进展
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2