分享:
分享到微信朋友圈
X
临床研究
基于多序列磁共振血管壁成像的下肢动脉病变诊断研究
王丽 贺雪平 邓炜 叶裕丰

Cite this article as: WANG L, HE X P, DENG W, et al. Diagnosis of lower extremity arterial disease based on multi-sequence magnetic resonance vessel wall imaging[J]. Chin J Magn Reson Imaging, 2024, 15(7): 130-136.本文引用格式:王丽, 贺雪平, 邓炜, 等. 基于多序列磁共振血管壁成像的下肢动脉病变诊断研究[J]. 磁共振成像, 2024, 15(7): 130-136. DOI:10.12015/issn.1674-8034.2024.07.022.


[摘要] 目的 本研究旨在探讨基于延迟进动定制激发(delay alternating with nutation for tailored excitation, DANTE)和可变翻转角快速自旋回波(sampling perfection with application-optimized contrasts by using different flip angle evolutions, SPACE)的多序列磁共振血管壁成像(magnetic resonance vessel wall imaging, MR-VWI)对下肢动脉病变(lower extremity arterial disease, LEAD)的诊断价值。材料与方法 回顾性分析了57例LEAD患者和26例无LEAD患者的病例及影像资料。所有患者均在3.0 T MRI设备上接受了T2快速自旋回波序列(turbo spin echo, TSE)、T1w DANTE-SPACE、对比增强(contrast enhancement, CE)T1w DANTE-SPACE和CE磁共振血管造影(magnetic resonance angiography, MRA)MR-VWI扫描。两名放射科医师在双盲条件下分别测量了T1w DANTE-SPACE和T2w TSE序列图像相应位置的管腔面积(lumen area, LA)、管壁面积(vessel wall area, VWA)、平均管壁厚度(average vessel wall, AVW)和最大管壁厚度(maximum vessel wall, MVW)等形态学指标。每位医师在3周间隔后对相同指标进行了重复测量。采用组内相关系数(intra-class correlation coefficients, ICC)和Bland-Altman方法评估了两种扫描技术以及不同组别之间的T1w DANTE-SPACE形态学测量指标的观察者一致性和可重复性。使用受试者工作特征(receiver operating characteristic, ROC)曲线评估了准确性。结果 T1w DANTE-SPACE与T2w TSE成像技术的信噪比(signal-to-noise ratio, SNR)和对比度比(contrast-to-noise ratio, CNR)差异有统计学意义(P<0.05),两名观察者对形态学测量指标的ICC值在0.85~0.99之间。在不同组别中,T1w DANTE-SPACE形态学测量指标的两次测量ICC值为0.90~0.99。Bland-Altman分析显示,观察者间和两次测量间的大部分形态学测量指标均在95%的一致性限度内。T1w DANTE-SPACE技术在LEAD组不同血管节段的形态学指标ROC曲线下面积(area under the curve, AUC)分别为0.904 [95%置信区间(confidence interval, CI):0.825~0.983]和0.905(95% CI:0.835~0.976)。当腘小腿动脉段的血管壁厚度为1.00 mm,LA为10.88 mm时,LEAD的敏感度分别为79.2%和85.4%,特异度分别为96.2%和92.3%,阳性预测值分别为97.4%和95.3%,阴性预测值分别为71.4%和77.4%。结论 多序列MR-VWI在评估LEAD斑块形态学指标方面表现出良好的重复性和高准确性,支持其在LEAD的MRI检查中的应用。
[Abstract] Objective To investigate the clinical utility of delay alternating with nutation for tailored excitation (DANTE) and sampling perfection with application-optimized contrasts by using different flip angle evolutions (SPACE) in multi-sequence magnetic resonance vessel wall imaging (MR-VWI) for diagnosing lower extremity arterial disease (LEAD).Materials and Methods The case and imaging data from 57 LEAD patients and 26 without LEAD patients were retrospectively included. All patients underwent T2-weighted turbo spin echo (T2w-TSE), T1-weighted DANTE-SPACE, contrast-enhanced T1-weighted DANTE-SPACE, and contrast-enhanced magnetic resonance angiography (CE-MRA) MR-VWI scans on 3.0 T MRI equipment. Lumen area (LA), vessel wall area (VWA), and average vessel wall thickness (AVW) were measured by two radiologists in a double-blind procedure. The intra-class correlation coefficient (ICC) and Bland-Altman method were used to assess inter-observer agreement and agreement between different scanning techniques. Receiver operating characteristic (ROC) curves were used to evaluate accuracy.Results Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) values were significantly different between T1w DANTE-SPACE and 2D TSE imaging techniques (P<0.05). ICC values for morphological measurements ranged from 0.85 to 0.99 between two observers and from 0.90 to 0.99 for repeated measurements. Bland-Altman analysis showed good agreement between observers and measurements. The T1w DANTE-SPACE technique was applied to the morphological measurement index ROC of different vascular segments in the LEAD group, resulting in area under the curve (AUC) values of 0.904 [95% confidence interval (CI): 0.825-0.983] and 0.905 (95% CI: 0.835-0.976), respectively. When the vessel wall thickness of the popliteal artery segment was 1.00 mm and the lumen area (LA) was 10.88 mm, serving as the critical values, the sensitivity for LEAD was 79.2% and 85.4%, the specificity was 96.2% and 92.3%, the positive predictive value was 97.4% and 95.3%, and the negative predictive value was 71.4% and 77.4%, respectively.Conclusions Multi-sequence MR-VWI demonstrates good repeatability and high accuracy in evaluating morphological indicators of LEAD plaques, supporting its application in MRI examinations of LEAD.
[关键词] 下肢动脉病变;磁共振成像;血管壁成像;诊断
[Keywords] lower limb arterial disease;magnetic resonance imaging;magnetic resonance vessel wall imaging;diagnose

王丽 1, 2   贺雪平 1   邓炜 1   叶裕丰 1, 2*  

1 广州医科大学附属番禺中心医院放射科,广州 511400

2 广州市番禺区医学影像研究所,广州 511400

通信作者:叶裕丰,E-mail:yeyufengpy@qq.com

作者贡献声明:叶裕丰设计本研究的方案,对稿件重要内容进行了修改;王丽起草和撰写稿件,获取、分析和解释本研究的数据,获得了广州市科技计划基础与应用基础研究项目、广州市番禺区科技计划项目资助;贺雪平、邓炜获取、分析或解释本研究的数据,对稿件重要内容进行了修改;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 广州市科技计划基础与应用基础研究项目 202102080566,202201011638 广州市番禺区科技计划项目 2022-Z04-006
收稿日期:2024-01-05
接受日期:2024-07-09
中图分类号:R445.2  R654.4 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2024.07.022
本文引用格式:王丽, 贺雪平, 邓炜, 等. 基于多序列磁共振血管壁成像的下肢动脉病变诊断研究[J]. 磁共振成像, 2024, 15(7): 130-136. DOI:10.12015/issn.1674-8034.2024.07.022.

0 引言

       下肢动脉病变(lower extremity arterial disease, LEAD)是下肢动脉狭窄/闭塞的系统疾病,具有发病率高、致残率高的特点[1, 2],如果没有及时采取有效治疗,患者预后差。因此,早期发现并准确诊断LEAD范围、狭窄程度是LEAD治疗方案制订的重要依据。目前,对LEAD的诊断主要依靠磁共振血管造影(magnetic resonance angiography, MRA)等影像学检查方法[3, 4, 5],但由于LEAD早期症状不明显,病变段管腔存在正性重构的特性,现有的影像学方法很难准确评估管腔的狭窄程度及病变斑块的负荷程度[6, 7]。目前磁共振血管壁成像(magnetic resonance vessel wall imaging, MR-VWI)是识别血管斑块病理学特征的无创性影像学成像方法[8, 9, 10],并能够对动脉病变斑块进行治疗后随访[11, 12, 13]。但是,现有下肢动脉MR-VWI技术存在下肢动脉近心段局部血管扫描、膝关节以下的中小动脉血管壁无法精准评估、不能进行三维重建的不足之处[8, 14, 15]。针对上述问题,本研究旨在通过联合延迟进动定制激发(delay alternating with nutation for tailored excitation, DANTE)[16]和可变翻转角快速自旋回波(sampling perfection with application-optimized contrasts by using different flip angle evolutions, SPACE)[17, 18, 19]序列并结合多序列扫描应用于LEAD,探讨MR-VWI技术在LEAD的MRI检查中的诊断价值。

1 材料与方法

1.1 一般资料

       本回顾性研究遵守《赫尔辛基宣言》,经广州市番禺区中心医院伦理委员会批准,批准文号:PYRC-2024-005-01,免除全体受试者知情同意书。研究纳入广州市番禺区中心医院2018年6月至2022年12月确诊LEAD的患者57例及无LEAD的患者26例(表1)。

       纳入标准:LEAD组,(1)年龄大于40岁;(2)有吸烟、糖尿病、高血压、高脂血症等高危因素;(3)有LEAD的临床表现;(4)缺血肢体远端动脉搏动减弱或消失;(5)踝肱指数(Ankle Brachial Index, ABI)≤0.9;(6)CDU、CTA、MRA和数字减影血管造影(digital subtraction angiography, DSA)等影像学检查显示相应动脉的狭窄或闭塞等病变。根据我国《下肢动脉硬化闭塞症诊治指南》诊断标准,符合上述诊断标准前4条可诊断为LEAD[20]。无LEAD组,(1)无LEAD的临床表现;(2)下肢肢体远端动脉搏动减弱或消失;(3)ABI>0.9;(4)CDU、CTA、MRA和DSA等影像学检查显示下肢动脉无狭窄/闭塞。两组排除标准:(1)临床及影像资料不完整;(2)图像清晰度差影响诊断。

表1  患者基线特征
Tab. 1  Clinical baseline characteristics of the study population

1.2 检查方法

       采用西门子3.0 T MRI系统(MAGNETOM Prisma, Siemens Healthcare, Erlangen, Germany)。患者取仰卧位、足先进,使用使用16通道的下肢血管专用线圈联合腹部柔线圈,覆盖腹主动脉下段、髂动脉至小腿、踝足部的检查范围,3个长度约352 mm的扫描范围,重叠10%,上下范围达90 cm。采用True FISP序列,分3段从盆腔到小腿踝部进行扫描定位。T2快速自旋回波序列(turbo spin echo, TSE)扫描轴位slice thickness=5 mm,TR/TE=2800 ms/88 ms,Average=3.0,dist.factor=20%,Phase over sampling=20%,FOV read=360 mm,FOV phase=68.8%;T1w DANTE分段进行冠状位扫描,DANTE pulse train length=125 ms,voxel size=0.66 mm×0.66 mm×0.66 mm,TR/TE=650 ms/12 ms,turbo factor=40,Average=1.0,Slice over sampling=20%,FOV read=380 mm,FOV phase=100%。每一段扫描时间5.5 min。然后采用自动高压注射器通过肘静脉以2.5 mL/s的速率注射30 mL对比剂钆喷酸葡胺(Gd-DTPA,马根维显,拜耳先灵公司,柏林,德国,剂量0.2 mmol/kg)及20 mL盐水后做CE-MRA扫描,扫描范围与前者一致,CE-MRA扫描参数如下:TR/TE=2.22 ms/0.94 ms,FOV read=450 mm,FOV phase=87.5%,每一段扫描时间22 s。随后进行T1w DANTE-SPACE延迟增强扫描,扫描范围与前者一致,扫描参数同上。

1.3 图像分析

       扫描完成后将所有图像传入锐珂医疗影像存储及通讯系统诊断工作站Carestream.Vue PACS(12.1.5.0440)进行图像分析。由两名放射科医师(分别从事外周血管MRI诊断工作6年的主治医师和12年的副主任医师)以双盲法,将T2w TSE序列作为金标准进行对照分别对T1w DANTE-SPACE、T2w TSE序列进行分析和测量。我们将采集图像分为髂动脉段(包括腹主动脉下段、双侧髂总动脉、髂内动脉、髂外动脉)、股动脉段(股总动脉、股浅动脉、股深动脉)、腘小腿动脉段(包括腘动脉、胫前动脉、胫后动脉、腓动脉)三个节段(图1)。LEAD组选取每一血管节段最狭窄处管壁最大层面进行感兴区的勾画,噪声、肌肉信号分别选择同一层面空气、下肢肌肉勾画;无LEAD组按照髂动脉、股动脉、腘动脉分叉处解剖标志,以距离测量中心层面近远端间隔10 mm水平,选取管壁最大层面进行感兴区的勾画,噪声信号选取同一层面相同感兴区面积勾画,肌肉信号选择同一层面感兴区面积勾画(图2)。最终LEAD组获得171个病变血管节段、无LEAD组获得78个血管节段用于图像分析。每位医师在间隔3周后对同样的指标进行重复测量。测量内容包括管腔面积(lumen area, LA)、管壁面积(vessel wall area, VWA)、平均管壁厚度(average vessel wall, AVW)和最大管壁厚度(maximum vessel wall, MVW)。

       计算过程如下:(1)信号强度(signal intensity, SI)和噪声强度之比(signal-to-noise ratio, SNR)=SI斑块/σ噪声;(2)对比度和噪声强度之比(contrast-to-noise ratio, CNR)=(SI斑块-SI肌肉)/σ噪声;归一化管壁指数=VWA/LA。

图1  无LEAD 磁共振血管壁扫描图像。1A:下肢动脉解剖示意图示主要血管分支;1B:全下肢动脉磁共振血管壁成像扫描定位;1C~1D:T1w DANTE-SPACE 序列冠状位扫描曲面重建图(1C)及分段示意图(1D)。
图2  T1w DANTE-SPACE序列ROI放置示例,ROI分别位于斑块部分(ROI 1)、同层肌肉(ROI 2)和空气(ROI 3)。LEAD:下肢动脉病变;DANTE-SPACE:延迟进动定制激发和可变翻转角快速自旋回波;ROI:感兴趣区。
Fig. 1  MRI images of vascular wall in non-LEAD. 1A: The anatomical diagram of lower limb arteries shows the main blood vessel branches; 1B: Magnetic resonance vascular wall imaging scanning location of whole lower limb arteries; 1C-1D: T1w DANTE-SPACE sequence coronal scanning surface reconstruction (1C) and segment diagram (1D).
Fig. 2  Illustrated that ROI placed in plaque (ROI 1), muscle (ROI 2) and air (ROI 3), respectively. LEAD: lower extremity arterial disease; DANTE-SPACE: delay alternating with nutation for tailored excitation and sampling perfection with application-optimized contrasts by using different flip angle evolutions; ROI: region of interest.

1.4 统计学方法

       所有统计学分析均采用统计软件SPSS 26.0完成。评价计量资料是否符合正态性分布,采用均数±标准差表示。两组图像测量的SNR、CNR值比较采用方差分析、配对秩和检验评估。采用组内相关系数(intra-class correlation coefficients, ICC)及Bland-Altman法评估不同组别两名观察者、两次测量的一致性,0.75<ICC≤1.00表示一致性良好。

       准确性评估采用受试者工作特征(receiver operating characteristic, ROC)曲线,分析连续变量T1w DANTE-SPACE序列对于LEAD的诊断效能并得出临界值。最佳临界值由约登指数来确定。所有统计学检验均为双侧检验,P<0.05时认为差异具有统计学意义。

2 结果

2.1 图像质量评价

       两名观察者对LEAD组T1w DANTE-SPACE、T2w TSE测量的SNR/CNR表明,T1w DANTE-SPACE技术股动脉段图像的SNR高于T2w TSE(P<0.05);T1w DANTE-SPACE技术腘小腿动脉段图像的CNR高于T2w TSE(P<0.05)(表2图3)。

图3  男,42岁,下肢动脉病变患者下肢动脉磁共振血管壁扫描图像。3A:T1w DANTE-SPACE序列示左侧髂外动脉、股动脉脂质斑块,病变血管斑块(黄色框线)呈高信号;3B:T1w DANTE-SPACE序列示左侧股动脉脂质斑块,病变血管斑块(黄色框线)呈高信号;3C:T2w TSE压脂序列示左侧髂外动脉脂质斑块,病变血管斑块(黄色框线)呈高信号;3D:T2w TSE压脂序列示左侧股动脉脂质斑块,病变血管斑块(黄色框线)呈高信号。DANTE-SPACE:延迟进动定制激发和可变翻转角快速自旋回波;TSE:快速自旋回波。
Fig. 3  A 42-year-old man with lower extremity arterial disease (LEAD), MRI images of lower limb artery wall. 3A: T1w DANTE-SPACE sequence shows lipid plaques in the left external iliac artery and femoral artery (yellow frame line); 3B: T1w DANTE-SPACE sequence shows lipid plaques in the left femoral artery and femoral artery (yellow frame line); 3C: T2w-TSE fat saturation sequence shows lipid plaques in the left external iliac artery and femoral artery, and plaques in diseased vessels shows high signal (yellow frame line); 3D: T2w-TSE fat saturation sequence shows lipid plaque in the left femoral artery, the plaques of the diseased vessels showed high signal (yellow frame line). DANTE-SPACE: delay alternating with nutation for tailored excitation and sampling perfection with application-optimized contrasts by using different flip angle evolutions; TSE: fast spin echo.
表2  T1w DANTE-SPACE与T2w TSE两种技术同一血管节段SNR/CNR比较
Tab. 2  Comparison of differences of SNR and CNR in the same vascular segment between T1w DANTE-SPACE and T2w-TSE images

2.2 一致性评估

       两名观察者对两组的T1w DANTE-SPACE与T2w TSE图像上测的形态学指标一致性良好(ICC:0.85~0.99)(表3)。两名观察者、两次测量T1w DANTE-SPACE图像上测得的形态学指标一致性良好(ICC:0.90~0.99)(表4)。

       Bland-Altman图(图4)显示两名观察者及两次测量的形态学测量指标大部分在95%一致性界限内,差值的均值(上限,下限)分别为:无LEAD组-0.21~2.37(-4.38~8.36,-6.18~0.10)、-0.01~1.84(0.07~7.00,-4.32~-0.09)(图4);LEAD组-1.32~0.00(0.09~7.83,-8.67~-0.08)、-0.85~0.00(0.09~6.75,-7.17~-0.06)。

图4  无LEAD组形态学测量指标的Bland-Altman图。两名观察者的不同节段形态学测量指标的差值大部分在95%一致性界限内。测量指标后1、2、3 分别指不同节段的髂动脉段、股动脉段、腘小腿动脉段。
Fig. 4  Bland-Altman plot of consistency analysis by two observers for different segments VWA (4A, 4D, 4G), LA (4B, 4E, 4H), normalized wall index (4C, 4F, 4I), AVW (4J), and MVW (4K) in the non-LEAD group. The index groups
表3  T1w DANTE-SPACE与T2w TSE两种技术形态学测量指标的一致性分析
Tab. 3  Consistency of morphological measure between T1w DANTE-SPACE and T2w-TSE images
表4  T1w DANTE-SPACE序列在不同组别间形态学测量指标的一致性
Tab. 4  Consistency of morphological measurements of T1w DANTE-SPACE sequences among different groups

2.3 准确性评估

       不同部位的血管壁厚度、归一化管壁指数、管壁面积、管腔面积对LEAD的诊断价值不同,腘小腿动脉段血管壁厚度、LA的ROC曲线及其曲线下面积(area under the curve, AUC)分别为0.904(95% CI:0.825~0.983)、0.905(95% CI:0.835~0.976),当腘小腿动脉段血管壁厚度以1.00 mm作为临界值时,判断LEAD的敏感度度为79.2%,特异度为96.2%,阳性预测价值为97.4%,阴性预测价值为71.4%;当腘小腿动脉段LA以10.88 mm作为临界值时,判断LEAD的敏感度为85.4%,特异度为92.3%,阳性预测价值为95.3%,阴性预测价值为77.4%。腘小腿动脉段的指标较髂动脉段及股动脉段对应指标诊断价值要高(图5)。

图5  4种定量测量指标的ROC曲线图。5A:不同节段血管壁厚度的ROC曲线图;5B:不同节段归一化管壁指数的ROC曲线图;5C:不同节段管壁面积的ROC曲线图;5D:不同节段管腔面积的ROC曲线图。ROC:受试者工作特征曲线;AUC:曲线下面积;测量指标后的1、2、3分别指髂动脉段、股动脉段、腘小腿动脉段。
Fig. 5  ROC curves of 4 quantitative measurement indexes. 5A: ROC curves of vessel wall thickness at different segments; 5B: ROC curves of normalized tube wall indices at different segments; 5C: ROC curves of wall areas at different segments; 5D: ROC curve of lumen area at different segments. ROC: receiver operating characteristic; AUC: area under the curve. The index groups 1, 2, and 3 refer to iliac artery segment, femoral artery segment, popliteal leg artery segment, respectively.

3 讨论

       本研究通过基于T1w DANTE-SPACE的多序列VW-MRI应用于LEAD,分别对LEAD患者、无LEAD患者进行扫描,并将T1w DANTE-SPACE与T2w TSE序列形态学指标进行准确性验证,同时评估两种扫描技术以及不同组别之间的T1w DANTE-SPACE形态学测量指标的观察者一致性和可重复性。结果表明T1w DANTE-SPACE形态学测量指标与T2w TSE诊断结果相符合;T1w DANTE-SPACE序列形态学测量指标在组内及组间的一致性好。表明与常规T2w TSE相比,基于T1w DANTE-SPACE的多序列MR-VWI应用于LEAD诊断准确性高,可重复性好,支持其在LEAD的MRI检查中应用,可提高早期LEAD的准确率。

3.1 T1w DANTE-SPACE序列应用于LEAD的优势

       有研究报道对LEAD采用MRI检查方法得到进一步发展和临床验证,可以对下肢功能进行评估[21, 22, 23],尤其对血管壁及其斑块组成评估的技术,可以提供疾病预后及监测数据[24]。MR-VWI是公认的与病理结果相一致的无创性影像学成像方法,下肢动脉解剖结构具有分支复杂繁多、走行范围长(>50 cm)、部位深(位于肌间及骨膜肌之间)、血管及其分支管径纤细等解剖特性[25];膝以下动脉血管分支血流缓慢,血管管壁容易形成斑块。如何在保证图像质量前提下,能够进行下肢动脉大范围扫描已成为MR-VWI的研究热点方向。有研究采用二维TSE、三维DANTE-FLASH、MERGE序列进行下肢股浅动脉扫描,未对膝关节以下的中小动脉进行扫描,而且现有的扫描技术不能对图像进行三维多方位重建[8, 14, 15]。目前三维MR-VWI中延迟进动定制激发DANTE[16, 26, 27]、SPACE序列[28, 29]是较广泛应用于血管壁成像序列。DANTE是一种无选择性不平衡的射频脉冲平衡稳态自由进动序列,具有抑制周围软组织信号、抑制任意方向的缓慢流动血流、信噪比损失小的特点,有助于下肢血管膝关节以下的中、小动脉及其分支的血管壁成像;SPACE序列具有对磁场不均匀性不敏感的特点,可实现大范围血管扫描的快速成像。目前,DANTE-SPACE序列较多应用于头颈部血管壁成像[28, 30],本研究采用T1w DANTE-SPACE序列对LEAD进行全下肢动脉大范围(约90 cm)扫描,并同时达到0.7 mm各向同性空间分辨率,弥补了现有技术下肢动脉局部扫描、不能进行三维重建的局限性。

3.2 T1w DANTE-SPACE序列诊断效能

       图像质量评价方面,T1w DANTE-SPACE序列图像质量高于T2w TSE序列,可能与DANTE-SPACE序列受磁场不均匀性干扰小,同时抑制动脉血管腔内血流及周围软组织的信号,提高血管壁信号强度有关;尤其是LEAD患者,动脉病变斑块信号更易识别。有研究采用的三维DANTE-FLASH序列对小样本(8例健康志愿者,3例患者)股浅动脉进行血管壁成像[8],表明该三维MR-VWI序列识别斑块及管腔狭窄的能力与T2 DB-TSE序列一致,具有同样的诊断性效能。

       准确性方面,不同节段血管壁的定量测量指标对LEAD的诊断的ROC曲线表明,腘小腿动脉段血管壁厚度、LA的诊断价值较高,判断LEAD的阳性预测值分别为97.4%和95.3%。

       一致性方面,应用于两次测量、两个观察者的无LEAD组、LEAD组、全部样本的形态学定量测量,T1w DANTE-SPACE技术与T2w TSE扫描技术诊断价值的一致性强;其中两个观察者对下肢动脉图像定量测量值的差异无统计学意义,表明所测量的图像具有较好管腔轮廓,适用观察者的观察,测量方法具有可重复性。有文献报道,两名观察者对股浅动脉MRA检查图像的观察结果一致性好[8, 14, 31];两名观察者不论对二维、三维MR-VWI技术形态学测量指标的一致性均较好[8, 14],与本研究结果一致。两组间血管节段定量测量指标ICC结果表明,LEAD组高于无LEAD组,可能由于LEAD组病变血管壁增厚,管壁及管腔形态显示更加明显,易于病变部位测量;LEAD组内血管节段定量测量指标的ICC结果表明,近心端较远心端一致性强,这可能由于远心端血流缓慢、血管逐渐变细、管壁变薄、LA小,发生病变后管壁及管腔结构观察不清。有学者采用3D DANTE CUBE序列对动物腹主动脉粥样硬化病变管壁进行扫描,T1WI和T2WI序列之间的一致性较好,但两种序列测量的标准化管壁指数与病理图像血管外膜内边缘测量的结果一致性欠佳,在管壁菲薄的正常血管中尤为明显[23]。MR-VWI对管壁菲薄的血管测量可能会产生一定偏差,与病理结果一致性不佳。

3.3 局限性

       本研究存在不足:(1)LEAD组与无LEAD组例数差距大,比较时可能会发生偏差,后续研究将扩大无LEAD组例样本量;(2)本研究的数据均来源于同一家医院,下一步将依托区域影像中心,继续扩大样本量进行多中心对照分析,提高诊断效能。

4 结论

       综上所述,本研究T1w DANTE-SPACE技术联合多序列应用于下肢动脉血管壁成像形态学测量指标的评估具有可重复性好、准确性高的特点,为临床对LEAD的诊断提供一种无创准确的影像学诊断方法。

[1]
GERHARD-HERMAN M D, GORNIK H L, BARRETT C, et al. 2016 AHA/ACC guideline on the management of patients with lower extremity peripheral artery disease: a report of the American college of cardiology/american heart association task force on clinical practice guidelines[J/OL]. Circulation, 2017, 135(12): e726-e779 [2023-04-12]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5477786/. DOI: 10.1161/CIR.0000000000000471.
[2]
VOS T, FLAXMAN A D, NAGHAVI M, et al. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010[J]. Lancet, 2012, 380(9859): 2163-2196. DOI: 10.1016/S0140-6736(12)61729-2.
[3]
AGHAYEV A, STEIGNER M. Magnetic resonance angiography of the arteries of the upper and lower extremities[J]. Magn Reson Imaging Clin N Am, 2023, 31(3): 361-372. DOI: 10.1016/j.mric.2023.04.002.
[4]
KOMAKI S, KIDA K, HAYASHI Y, et al. Non-electrocardiogram-gated and non-contrast-enhanced magnetic resonance angiography of the lower limb arteries using three-dimensional multishot T1-weighted fast-field echo-echo planar imaging[J]. Nihon Hoshasen Gijutsu Gakkai Zasshi, 2022, 78(4): 333-341. DOI: 10.6009/jjrt.2022-1239.
[5]
REGI S S, IRODI A, KESHAVA S N, et al. Balanced steady-state free precision and time of flight noncontrast magnetic resonance angiography in peripheral arterial disease[J]. J Clin Interv Radiol ISVIR, 2022, 06(2): 098-105. DOI: 10.1055/s-0041-1730845.
[6]
NORGREN L, HIATT W R, DORMANDY J A, et al. Inter-society consensus for the management of peripheral arterial disease (TASC Ⅱ)[J]. Eur J Vasc Endovasc Surg, 2007, 33(1): S1-S75. DOI: 10.1016/j.ejvs.2006.09.024.
[7]
CONTE M S, POMPOSELLI F B. Society for Vascular Surgery Practice guidelines for atherosclerotic occlusive disease of the lower extremities management of asymptomatic disease and claudication. Introduction[J/OL]. J Vasc Surg, 2015, 61(3Suppl): 1S [2023-04-12]. https://www.sciencedirect.com/science/article/pii/S0741521414022848. DOI: 10.1016/j.jvs.2014.12.006.
[8]
XIE G X, ZHANG N, XIE Y B, et al. DANTE-prepared three-dimensional FLASH: a fast isotropic-resolution MR approach to morphological evaluation of the peripheral arterial wall at 3 Tesla[J]. J Magn Reson Imaging, 2016, 43(2): 343-351. DOI: 10.1002/jmri.24986.
[9]
SIMAAN N, JUBEH T, SHALABI F, et al. Diagnostic yield of high-resolution vessel wall magnetic resonance imaging in the evaluation of young stroke patients[J/OL]. J Clin Med, 2023, 13(1): 189 [2023-04-12]. https://www.mdpi.com/2077-0383/13/1/189. DOI: 10.3390/jcm13010189.
[10]
冯芹, 白岩, 王梦珂, 等. 高分辨磁共振血管壁成像在不同时期颅内动脉夹层评估中的应用[J]. 磁共振成像, 2021, 12(2): 6-9, 14. DOI: 10.12015/issn.1674-8034.2021.02.002.
FENG Q, BAI Y, WANG M K, et al. Application of high-resolution magnetic resonance vessel wall imaging in evaluation of intracranial arterial dissection according to stage[J]. Chin J Magn Reson Imag, 2021, 12(2): 6-9, 14. DOI: 10.12015/issn.1674-8034.2021.02.002.
[11]
LI J, BIAN Y Y, WU F, et al. Association of morphology of lenticulostriate arteries and proximal plaque characteristics with single subcortical infarction: a whole-brain high-resolution vessel wall imaging study[J/OL]. J Am Heart Assoc, 2024, 13(10): e032856 [2024-06-14]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11179825/. DOI: 10.1161/JAHA.123.032856.
[12]
TAN S, ZHOU X, XU X, et al. Diagnostic performance of high-resolution vessel wall MR imaging combined with TOF-MRA in the follow-up of intracranial vertebrobasilar dissecting aneurysms after reconstructive endovascular treatment[J]. AJNR Am J Neuroradiol, 2023, 44(4): 453-459. DOI: 10.3174/ajnr.A7838.
[13]
LIU D Q, ZHAO C Y, ZHAO D L, et al. Association between the fetal-type posterior cerebral artery and intracranial anterior and posterior circulating atherosclerotic plaques using multi-contrast magnetic resonance vessel wall imaging[J]. Quant Imaging Med Surg, 2023, 13(12): 8383-8394. DOI: 10.21037/qims-23-611.
[14]
ISBELL D C, MEYER C H, ROGERS W J, et al. Reproducibility and reliability of atherosclerotic plaque volume measurements in peripheral arterial disease with cardiovascular magnetic resonance[J]. J Cardiovasc Magn Reson, 2007, 9(1): 71-76. DOI: 10.1080/10976640600843330.
[15]
CHIU B, SUN J, ZHAO X H, et al. Fast plaque burden assessment of the femoral artery using 3D black-blood MRI and automated segmentation[J]. Med Phys, 2011, 38(10): 5370-5384. DOI: 10.1118/1.3633899.
[16]
CHEN H W, HE X P, XIE G X, et al. Cardiovascular magnetic resonance black-blood thrombus imaging for the diagnosis of acute deep vein thrombosis at 1.5 Tesla[J/OL]. J Cardiovasc Magn Reson, 2018, 20(1): 42 [2024-06-14]. https://pubmed.ncbi.nlm.nih.gov/29936910/. DOI: 10.1186/s12968-018-0459-6.
[17]
ZHANG Z L, FAN Z Y, CARROLL T J, et al. Three-dimensional T2-weighted MRI of the human femoral arterial vessel wall at 3.0 Tesla[J]. Invest Radiol, 2009, 44(9): 619-626. DOI: 10.1097/RLI.0b013e3181b4c218.
[18]
BALU N, YARNYKH V L, CHU B C, et al. Carotid plaque assessment using fast 3D isotropic resolution black-blood MRI[J]. Magn Reson Med, 2011, 65(3): 627-637. DOI: 10.1002/mrm.22642.
[19]
王丽, 邓炜, 梁健科, 等. 快速三维MR血管壁成像评价外周动脉粥样硬化斑块[J]. 实用放射学杂志, 2020, 36(4): 571-573, 619. DOI: 10.3969/j.issn.1002-1671.2020.04.016.
WANG L, DENG W, LIANG J K, et al. Value of fast three-dimensional MR vessel wall imaging in assessment of peripheral atherosclerotic plaque[J]. J Pract Radiol, 2020, 36(4): 571-573, 619. DOI: 10.3969/j.issn.1002-1671.2020.04.016.
[20]
中华医学会外科学分会血管外科学组. 下肢动脉硬化闭塞症诊治指南(下)[J/OL]. 中国血管外科杂志(电子版), 2015, 7(4): 229-238 [2024-06-14]. https://doi.org/10.3969/j.issn.1674-7429.2015.03.005. DOI: 10.3969/j.issn.1674-7429.2015.03.005.
Vascular Surgery Group of the Chinese Medical Association Surgery Branch. Guidelines for diagnosis and treatment of arteriosclerosis obliterans of lower limbs (Ⅱ)[J/OL]. Chin J Vasc Surg Electron Version, 2015, 7(4): 229-238 [2024-06-14]. https://doi.org/10.3969/j.issn.1674-7429.2015.03.005. DOI: 10.3969/j.issn.1674-7429.2015.03.005.
[21]
SINHAROY A, REDDY N, LIN J K, et al. Magnetic resonance imaging based superficial femoral artery velocity measurements in peripheral artery disease[J]. Magn Reson Imaging, 2022, 93: 128-134. DOI: 10.1016/j.mri.2022.08.003.
[22]
MCDERMOTT M M, CARROLL T J, KIBBE M, et al. Proximal superficial femoral artery occlusion, collateral vessels, and walking performance in peripheral artery disease[J]. JACC Cardiovasc Imaging, 2013, 6(6): 687-694. DOI: 10.1016/j.jcmg.2012.10.024.
[23]
SPORKIN H L, PATEL T R, BETZ Y, et al. Chemical exchange saturation transfer magnetic resonance imaging identifies abnormal calf muscle-specific energetics in peripheral artery disease[J/OL]. Circ Cardiovasc Imaging, 2022, 15(7): e013869 [2024-06-15]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9310050/. DOI: 10.1161/CIRCIMAGING.121.013869.
[24]
HOSADURG N, KRAMER C M. Magnetic resonance imaging techniques in peripheral arterial disease[J]. Adv Wound Care, 2023, 12(11): 611-625. DOI: 10.1089/wound.2022.0161.
[25]
高士濂. 实用解剖图谱: 下肢分册[M]. 上海: 上海科学技术出版社, 2012.
GAO S L. Practical anatomical Atlas: Lower Limb volume[M]. Shanghai: Shanghai Science and Technology Press, 2012.
[26]
MITANI K, FUNAKI T, TANJI M, et al. Detecting immunoglobulin G4-related intracranial arteriopathy with magnetic resonance vessel wall imaging: a preliminary experience in two cases[J/OL]. BMC Neurol, 2022, 22(1): 476 [2023-04-12]. https://pubmed.ncbi.nlm.nih.gov/36510148/. DOI: 10.1186/s12883-022-03010-8.
[27]
赵海燕, 陈玉坤, 陈录广, 等. 磁共振3D DANTE CUBE序列对动脉管壁的定量评估: 与病理比较的实验研究[J]. 磁共振成像, 2022, 13(12): 111-116, 123. DOI: 10.12015/issn.1674-8034.2022.12.019.
ZHAO H Y, CHEN Y K, CHEN L G, et al. Quantitative assessment of arterial wall by magnetic resonance 3D DANTE CUBE sequence: an experimental study compared with pathology[J]. Chin J Magn Reson Imag, 2022, 13(12): 111-116, 123. DOI: 10.12015/issn.1674-8034.2022.12.019.
[28]
张娜. 面向脑血管病早期精确诊疗的磁共振血管壁成像研究[D]. 深圳: 中国科学院大学(中国科学院深圳先进技术研究院), 2018.
ZHANG N. Magnetic resonance vessel wall imaging for early and accurate diagnosis of cerebrovascular disease[D].Shenzhen: Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 2018.
[29]
邵秋季. 3D T1-SPACE高分辨管壁成像技术在脑血管支架术后的随访应用研究[D]. 郑州: 郑州大学, 2021. DOI: 10.27466/d.cnki.gzzdu.2021.005601.
SHAO Q J. Application of 3D T1-SPACE high resolution MR vessel wall imaging in the follow-up of cerebral artery stenting[D].Zhengzhou: Zhengzhou University, 2021.
[30]
WAN L W, ZHANG N, ZHANG L, et al. Reproducibility of simultaneous imaging of intracranial and extracranial arterial vessel walls using an improved T1-weighted DANTE-SPACE sequence on a 3 T MR system[J]. Magn Reson Imag, 2019, 62: 152-158. DOI: 10.1016/j.mri.2019.04.016.
[31]
WEISS K J, EGGERS H, STEHNING C, et al. Feasibility and robustness of 3T magnetic resonance angiography using modified Dixon fat suppression in patients with known or suspected peripheral artery disease[J/OL]. Front Cardiovasc Med, 2020, 7: 549392 [2024-06-15]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7661693/. DOI: 10.3389/fcvm.2020.549392.

上一篇 基于PI-RADS V2.1评估DCE-MRI定量值对外周带前列腺癌和局灶性慢性前列腺炎的鉴别价值
下一篇 髌下脂肪垫IDEAL-IQ和T2 mapping定量参数与膝骨关节炎程度的相关性研究
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2