分享:
分享到微信朋友圈
X
临床研究
合成MRI联合MUSE-DWI鉴别胶质瘤复发和治疗相关改变的应用研究
吕瑞瑞 杨治花 党佩 黄雪莹 马文富 金一萱 吕鸿洁 王晓东

Cite this article as: LÜ R R, YANG Z H, DANG P, et al. Application of synthetic MRI combined with MUSE-DWI to differentiate glioma progressive disease from treatment-related changes[J]. Chin J Magn Reson Imaging, 2024, 15(7): 81-86.本文引用格式:吕瑞瑞, 杨治花, 党佩, 等. 合成MRI联合MUSE-DWI鉴别胶质瘤复发和治疗相关改变的应用研究[J]. 磁共振成像, 2024, 15(7): 81-86. DOI:10.12015/issn.1674-8034.2024.07.014.


[摘要] 目的 探讨合成MRI定量参数联合多重灵敏度编码扩散加权成像(multiplexed sensitivity encoding diffusion weighted imaging, MUSE-DWI)鉴别胶质瘤复发(progressive disease, PD)和治疗相关改变(treatment-related change, TRC)的应用价值。材料与方法 本研究于2020年9月至2022年11月期间,依据纳、排标准收集胶质瘤全切术后行完整的放、化疗治疗,定期MRI随访出现新发强化灶的患者45例,其中PD组26例、TRC组19例。所有患者均行MUSE-DWI、合成MRI及对比增强T1加权成像(contrast enhanced T1-weighted imaging, CE_T1WI)序列。测量强化区域表观扩散系数(apparent diffusion coefficient, ADC)及增强前、后T1值(T1pre、T1post)、T2值(T2pre、T2post)。采用独立样本t检验或Mann-Whitney U检验比较合成MRI定量参数和ADC值的组间差异,采用二元logistic回归及受试者工作特征(receiver operating characteristic, ROC)曲线评估单参数及其联合的诊断效能。结果 (1)PD T1pre高于TRC(P<0.05),T1post和ADC值低于TRC(P<0.05),两组间T2pre、T2post差异无统计学意义(P>0.05)。(2)单参数分析时,ADC值诊断效能最高(AUC=0.878),其次是T1post、T1pre(AUC为0.783、0.745)。T1post、T1pre两者联合时,诊断效能较单参数提高(AUC=0.850)。多参数联合模型(T1post+T1pre+ADC)诊断效能最高(AUC=0.901)。结论 合成MRI定量参数(T1post、T1pre)联合ADC值的多参数联合模型,在鉴别胶质瘤PD和TRC中具有一定价值。
[Abstract] Objective To assess the utility of synthetic MRI quantitative parameters and multiplexed sensitivity encoding diffusion weighted imaging (MUSE-DWI) in combination to differentiate glioma progressive disease (PD) from treatment-related change (TRC).Materials and Methods In this study, we collected 45 patients who exhibited new enhancing lesions after surgery followed by completion of chemoradiation therapy from September 2020 to November 2022. The scan sequences included synthetic MRI, MUSE-DWI and contrast enhanced T1-weighted imaging (CE_T1WI). The patients were classified into two groups: PD group (n=26) and TRC group (n=19). The ROI is placed on each image to measure apparent diffusion coefficient (ADC), pre-contrast T1, T2 value (T1pre, T2pre) and post-contrast T1, T2 value (T1post, T2post). Quantitative parameters (T1pre, T2pre and T1post, T2post) and ADC were evaluated using Student's t-test or Mann-Whitney U test. We generated receiver operating characteristic (ROC) curves for each parameter and their combinations. Finally, we used the area under the ROC curve (AUC) to assess the performance of each parameter and their combinations.Results (1) The T1pre value in the PD group were significantly higher than the TRC group (P<0.05). The values of T1post and ADC in the PD group were significantly lower than the TRC group (all P<0.05). There was no statistical difference in T2pre, T2post value (P>0.05). (2) ADC diagnostic performance was highest when using single parameter analysis (AUC=0.878), followed by T1post and T1pre with AUC of 0.783 and 0.745, respectively. The combinations of two parameters (T1pre+T1post) improved the diagnostic performance (AUC=0.850) compared to the single parameter. A combined multi-parameter model (T1pre+T1post+ADC) was established with the highest diagnostic efficacy (AUC=0.901).Conclusions The combinations of the two techniques to construct a multiparametric combined model of relaxation quantitative parameters (T1pre, T1post) combined with ADC values have a good diagnostic value in differentiating PD and TRC.
[关键词] 胶质瘤;合成磁共振成像;磁共振成像;多重灵敏度编码;复发;治疗相关改变
[Keywords] glioma;synthetic magnetic resonance imaging;magnetic resonance imaging;multiplexed sensitivity-encoding;progressive disease;treatment-related change

吕瑞瑞 1   杨治花 2   党佩 1   黄雪莹 1   马文富 3   金一萱 3   吕鸿洁 3   王晓东 1*  

1 宁夏医科大学总医院放射科,银川 750003

2 宁夏医科大学总医院肿瘤医院放疗科,银川 750003

3 宁夏医科大学第一临床医学院,银川 750003

通信作者:王晓东,E-mail:xdw80@yeah.net

作者贡献声明:吕瑞瑞、杨治花、党佩、黄雪莹、马文富、金一萱、吕鸿洁、王晓东均参与选题和试验设计;吕瑞瑞查阅文献并构思本研究框架,获取收集数据及整理分析,起草和撰写稿件;杨治花、党佩、黄雪莹、马文富、金一萱、吕鸿洁获取、分析和解释本研究的数据,王晓东对稿件的重要内容进行了修改;王晓东和党佩获得了宁夏回族自治区自然科学基金项目的资助;吕瑞瑞获得宁医大总院2023年新入职硕士人才培养项目的资助;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 宁夏回族自治区自然科学基金项目 2023AAC03557 宁医大总院2023年新入职硕士人才培养项目 编号:〔2023〕394号
收稿日期:2024-02-04
接受日期:2024-07-12
中图分类号:R445.2  R730.264 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2024.07.014
本文引用格式:吕瑞瑞, 杨治花, 党佩, 等. 合成MRI联合MUSE-DWI鉴别胶质瘤复发和治疗相关改变的应用研究[J]. 磁共振成像, 2024, 15(7): 81-86. DOI:10.12015/issn.1674-8034.2024.07.014.

0 引言

       脑胶质瘤是成人神经系统最常见的原发恶性肿瘤[1],胶质母细胞瘤是胶质瘤中最常见、最具侵袭性的类型,预后更差[2]。放化疗后的几个月甚至几年内,随访出现新的强化病灶,可能是肿瘤复发(progressive disease, PD)或治疗相关改变(treatment-related change, TRC),两者鉴别困难,在临床诊疗中误诊率较高。常规MRI主要根据病灶的形态学进行诊断,缺乏标准化、可量化的参数,在鉴别胶质瘤PD和TRC中具有一定局限性。合成MRI扫描时间控制在5 min内[3],可以在合成图像上测量定量数值[4, 5],能从微观角度反映病灶组织的病理生理特征[6]。多重灵敏度编码扩散加权成像(multiplexed sensitivity encoding diffusion weighted imaging, MUSE-DWI)采用灵敏度编码的并行成像方法[7],相较于常规DWI,MUSE-DWI能显著减少病灶几何失真及易感伪影并提高信噪比[8, 9],能详细反映细胞内外水分子扩散能力、脑组织灰白质结构及功能变化[10]。以往利用合成MRI行胶质瘤研究主要集中于肿瘤分级、肿瘤增殖活性及异柠檬酸脱氢酶1(genotype of isocitrate dehydrogenase 1, IDH1)基因型、O6-甲基鸟嘌呤-DNA甲基转移酶(O6-methylguanine-DNAmethyltransferase, MGMT)甲基化预测等[11, 12, 13, 14],利用合成MRI行胶质瘤PD和TRC鉴别诊断的研究较少,本研究采用合成MRI定量参数联合MUSE-DWI鉴别胶质瘤PD和TRC的价值,以期发现一种较高效的非侵入性鉴别诊断方法。

1 材料与方法

1.1 一般资料

       本研究遵守《赫尔辛基宣言》,获宁夏医科大学总医院科研伦理委员会批准,免除受试者知情同意,批准文号:KYLL-2022-0298。收集宁夏医科大学总医院自2020年9月至2022年11月行胶质瘤全切术并放疗、化疗完成后,定期MRI随访出现新发强化灶45例(PD 26例、TRC 19例),男25例,女20例,年龄29~72(51.2±10.5)岁。纳入标准:(1)术后病理为胶质瘤,并接受完整放化疗;(2)放化疗后对比增强T1加权成像(contrast enhanced T1-weighted imaging, CE_T1WI)出现渐进性强化灶,随访时间6~12个月,随访截止时间为2023年11月30日。排除标准:(1)术后病理、影像学资料不完整者;(2)图像伪影重,无法准确勾画感兴趣区(region of interest, ROI)者。

1.2 仪器与方法

       使用配备48通道头颈联合科研线圈的美国GE Signa Architect 3.0 T磁共振扫描仪扫描。肘静脉团注对比剂钆喷酸二葡甲胺(GE药业,美国),剂量0.1 mmol/kg,速率3.0 mL/s,随即以相同速率注射生理盐水20 mL冲洗。主要序列及扫描参数如下:(1)DWI-MUSE:基于多激发平面回波成像,TR 3921 ms,TE 78.1 ms,矩阵160×166,FOV 24 cm×24 cm,激励次数2,层数20,层厚5 mm,层间隔1 mm,带宽±250 kHz,b值=0、1000 s/mm2,扫描时长1 min 11 s。(2)合成MRI:TR 4214 ms,TE 21.6 ms,矩阵320×256,FOV 24 cm×24 cm,激励次数1,层数20,层厚5 mm,层间隔1 mm,带宽±22.73 kHz,扫描时长3 min 39 s。

1.3 图像分析

       由两名分别具有五年以上神经影像诊断经验的主治医师以双盲法参照MRI CE_T1WI图像,勾画ROI测量,ROI面积约0.25~0.35 cm2,避开肉眼可见的囊变、坏死、出血和易感伪影较重区域。(1)合成MRI参数测量:采用MRI主机系统自带软件(MAGiC software,v. 100.1.1)获取定量图进行测量。测量各ROI增强前、后T1值(T1pre、T1post)、T2值(T2pre、T2post),测量3次,计算平均值。②表观扩散系数(apparent diffusion coefficient, ADC)测量:扫描后将DICOM数据传输至GE ADW 4.7工作站,MUSE-DWI衍生成的ADC图,按照上述原则放置ROI,测量ADC值,测量3次,计算平均值。

1.4 分组标准

       基于组织学或修订版脑胶质瘤治疗反应评估标准(Modified Criteria for Radiographic Response Assessment in Glioblastoma, mRANO)[15]的放射学特征和临床症状综合评估。(1)脑组织穿刺活检或二次手术组织学见肿瘤细胞为PD,未发现肿瘤细胞为TRC;(2)影像学随访:根据mRANO由两名具有八年以上神经影像诊断经验的副主任医师及主任医师进行诊断。随访期内(>6个月)强化范围增大,周围水肿区域增大,患者临床症状较前加重,为PD;若随访期内(>6个月)强化区域未变化或减小,水肿区域减小,占位效应较前减轻,临床症状较前减轻,则为TRC。本研究11例(PD 8例,TRC 3例)根据二次手术或穿刺活检病理确诊,余34例(PD 18例,TRC 16例)根据临床症状及影像随访放射学评估诊断(图12)。首次出现强化灶MRI扫描和临床及放射学评估之间的中位时间约8个月。

图1  男,47岁,左侧颞叶胶质母细胞瘤(WHO 4级)。1A:术前CE_T1WI示左侧颞角强化病变;1B~1E为同步放化疗后复查;1B:T2-FLAIR术区见片状水肿;1C:MUSE-DWI呈高信号;1D:增强前T1 mapping图;1E:增强后T1 mapping图;1F:CE_T1WI示左侧颞叶不规则强化病变;1G:随访强化灶较前明显减小,为治疗相关改变。
图2  女,50岁,右侧顶叶胶质母细胞瘤(WHO 4级)。2A:术前CE_T1WI示右侧顶叶强化病变;2B~2E为同步放化疗后复查;2B:T2-FLAIR术区边缘高信号灶;2C:MUSE-DWI以低信号为主,周围环绕高信号;2D:增强前T1 mapping图;2E:增强后T1 mapping图;2F:CE_T1WI示术区边缘强化灶;2G:随访强化范围较前明显增大,为肿瘤复发。CE_T1WI:对比增强T1加权成像;FLAIR:液体衰减反转恢复;MUSE-DWI:多重灵敏度编码扩散加权成像。before, which is treatment-related change. Fig. 2 Female, 50 years old, with glioblastoma in the right parietal lobe (WHO grade 4). 2A: Preoperative CE_T1WI shows enhanced lesions in the right parietal lobe; 2B~2E: The review after radiotherapy and chemotherapy; 2B: T2-FLAIR; 2C: MUSE-DWI is dominated by low signal, surrounded by high signal; 2D: T1 mapping before enhancement; 2E: T1 mapping after enhancement; 2F: CE_T1WI enhanced scanning shows enhanced focus on the edge of operation area, T1 mapping after enhancement; 2G: The follow-up enhancement range is obviously larger than before, which is progressive disease. CE_T1WI: contrast enhanced T1-weighted imaging; FLAIR: fluid-attenuated inversion-recovery; MUSE-DWI: multiplexed sensitivity encoding diffusion weighted imaging.
Fig. 1  Male, 47 years old, left temporal lobe glioblastoma (WHO grade 4). 1A: Preoperative CE_T1WI shows left temporal angle enhancement;1B-1E: The review after radiotherapy and chemotherapy; 1B: T2-FLAIR; 1C: MUSE-DWI shows high signal;1D: T1 mapping before enhancement; 1E: T1 mapping after enhancement; 1F: CE_T1WI shows irregular enhanced lesions in the left temporal before, which is treatment-related change.
Fig. 2  Female, 50 years old, with glioblastoma in the right parietal lobe (WHO grade 4). 2A: Preoperative CE_T1WI shows enhanced lesions in the right parietal lobe; 2B~2E: The review after radiotherapy and chemotherapy; 2B: T2-FLAIR; 2C: MUSE-DWI is dominated by low signal, surrounded by high signal; 2D: T1 mapping before enhancement; 2E: T1 mapping after enhancement; 2F: CE_T1WI enhanced scanning shows enhanced focus on the edge of operation area, T1 mapping after enhancement; 2G: The follow-up enhancement range is obviously larger than before, which is progressive disease. CE_T1WI: contrast enhanced T1-weighted imaging; FLAIR: fluid-attenuated inversion-recovery; MUSE-DWI: multiplexed sensitivity encoding diffusion weighted imaging.

1.5 统计学分析

       采用SPSS 26.0和MedCalc 20.009软件进行分析。符合正态分布的参数以均数±标准差(x¯±s)表示,否则以中位数(四分位数)[M (Q1, Q3)]表示。正态分布参数采用独立样本t检验,不服从正态分布以Mann-Whitney U检验评估组间差异的显著性。采用组内相关性系数(intraclass correlation coefficient, ICC)评价2名医师测量参数的一致性(ICC≥0.6为良好,0.4~0.6为一般,<0.4为差)。对组间比较有差异的参数采用二元logistic回归及受试者工作特征(receiver operating characteristic, ROC)曲线分析各参数及其联合的诊断效能,以DeLong检验比较ROC曲线下面积(area under the curve, AUC),比较结果均以双侧P<0.05为差异有统计学意义。

2 结果

2.1 一致性检验

       两名医师测量参数值(T1pre、T1post、T2pre、T2post和ADC)的ICC分别为0.857、0.835、0.843、0.869和0.883,一致性较好,ICC均大于0.6。

2.2 合成MRI定量参数及ADC值在PD和TRC组间比较

       PD组T1pre高于TRC组(P=0.005),T1post和ADC值显著低于TRC组(P值分别为0.001、<0.001)。两组间T2pre、T2post值差异无统计学意义(P值分别为0.845、0.073),见表1

表1  PD组与TRC组合成MRI及MUSE-DWI定量参数比较
Tab. 1  Comparison of synthetic MRI and MUSE-DWI quantitative parameters between PD group and TRC group

2.3 合成MRI定量参数、ADC值及其联合的诊断效能

       利用单参数分析时,ADC值诊断效能最高(AUC=0.878),其次是T1post、T1pre,AUC分别为0.783、0.745。T1pre、T1post联合时,诊断效能较单参数提高(AUC=0.850)。建立多参数联合模型(T1pre+T1post+ADC),诊断效能最高(AUC=0.901),见表2图3。DeLong检验结果显示联合参数模型(T1pre+T1post+ADC、T1pre+T1post)与T1pre、T1post、ADC的AUC差异均存在统计学意义。

图3  单参数及多参数联合鉴别诊断的ROC曲线。ROC:受试者工作特征;T1pre、T2pre为增强前测得的T1、T2值;T1post、T2post为增强后测得的T1、T2值;ADC:表观扩散系数。
Fig. 3  ROC curves of single parameter and their combinations. ROC: receiver operating characteristic; T1pre and T2pre are T1 and T2 values measured before enhancement; T1post and T2post are T1 and T2 values measured after enhancement; ADC: apparent diffusion coefficient.
表2  单参数(T1pre、T1post、ADC)及多参数联合诊断效能
Tab. 2  Comparison of single parameter (T1pre, T1post, ADC) and multi-parameter combined diagnosis efficiency

3 讨论

       本研究分析了合成MRI定量参数鉴别诊断胶质瘤PD和TRC的价值,结果显示,T1pre、T1post有助于鉴别PD和TRC,且两种参数联合诊断效能较单参数提高。将ADC值纳入到合成MRI定量参数中,构建多参数联合模型(T1pre+T1post+ADC),诊断效能最高(AUC=0.901),合成MRI和MUSE-DWI定量参数组成的多参数联合模型能更加有效地鉴别PD和TRC。

3.1 T1pre鉴别胶质瘤复发和治疗相关改变的价值

       弛豫时间是物质固有性质,受细胞结构、水含量、脂质、蛋白质分子等浓度的影响[16]。PD和TRC细胞数量、结构等微观结构组成差异,使上述物质的含量不同,影响组织磁化特性,反映在MRI上是弛豫时间不同,可以通过合成MRI定量图反映。

       既往研究[17, 18]表明,接受治疗的增强区域早期T1值减小预示着治疗反应良好。国外学者研究发现注射钆对比剂前T1值高于2051 ms预测真实肿瘤组织的敏感度为86%,研究发现部分患者对比增强区域与T1延长区域重叠较低,1名患者重叠区域约0%~10%,二次手术后病理证实是治疗诱导的组织变化,定量T1(quantitative T1, QT1)可能是不使用对比剂的情况下监测肿瘤生长有用的方法[19]。本研究与上述研究结果一致,PD组T1pre较TRC组高,主要原因可能是:T1值与细胞增殖数量、密度及血管生成的程度等有关[20],肿瘤复发组织由肿瘤细胞、微血管等组成,以上物质可以与水分子产生自旋相互作用,T1值升高。此外,LESCHER等[21]利用增强前定量T1扫描结果表明胶质母细胞瘤复发患者QT1延长,且在研究后期随访中发现QT1延长的区域,对应于常规MRI强化范围,本研究与LESCHER等研究结果相似。

3.2 T1post鉴别胶质瘤复发和治疗相关改变的价值

       肿瘤组织生长导致血脑屏障(blood brain barrier, BBB)通透性增加,钆剂渗漏到脑组织中,改变了组织水的磁性,合成MRI增强后可以提供与肿瘤对比剂渗漏相关的组织特性的变化[22]。既往研究[23]显示合成MRI增强后显示脑转移瘤中钆剂渗漏引起的R1和R2改变。ZACH等[24]研究发现胶质瘤治疗后行MRI增强出现钆对比剂延迟强化,而PD无此征象,两者对比剂代谢特点不同,PD对比剂呈快速流入型,TRC为持续缓慢流入型,可能原因是PD出现大量未成熟、迂曲的新生血管,血管内膜尚不完整,血管壁局部缺失,通透性增加,对比剂快速进入并积聚,对比剂缩短T1弛豫时间的作用在PD时更明显,对比剂代谢特点不同导致两组间T1post值差异。

       此外,病灶的强化程度与BBB破坏情况和病灶区域血流灌注情况有关。正常脑组织存在完整BBB,对比剂难以由血管内渗漏至血管外间隙,脑组织增强前后T1值变化不明显。PD时肿瘤组织生长侵袭BBB,对比剂通过损坏的BBB进入组织间隙,对局部磁场产生影响,顺磁性物质钆剂等大分子复合物缩短组织T1弛豫时间,以ms为单位量化对比剂注入后病灶弛豫时间的差异[19],TRC血管内膜较完整,钆剂漏出少,因此PD对比剂注射后T1值降低更明显。国外学者[25]利用深度学习的多参数MRI定量分析显示,复发区域对比剂摄取增加,可能是复发区域微血管生成加之肿瘤细胞增殖浸润导致BBB受损相关,本研究与既往研究结果一致。

3.3 MUSE-DWI技术的优势及其在鉴别胶质瘤复发和治疗相关改变的价值

       常规DWI采用单次激发回波平面成像采集,几何失真是其成像的缺点[26]。MUSE采用并行成像技术沿相位编码方向多点分割采集,降低几何失真,空间分辨率、信噪比均提高[27, 28]。MUSE-DWI可明显改善术后病灶区域的磁敏感伪影,加之高分辨率成像特点,病灶显示更清晰。ADC值与细胞密度、细胞外间隙大小有关。PD伴肿瘤细胞增多、排列密集、细胞外间隙变小,水分子扩散运动受限,ADC值较低[29]。TRC无肿瘤细胞和新生血管,水分子扩散受限不及复发明显,ADC值较复发高[30],以上为本研究TRC组ADC值较PD组高的原因。

3.4 多参数联合模型鉴别胶质瘤复发和治疗相关改变

       PD与TRC均在常规MRI表现为新发强化灶形成[31],常规MRI不能定量评估强化灶导致鉴别困难。合成MRI通过定量组织的微观信息,MUSE-DWI能清晰显示病灶[32],尤其是在术区磁敏感伪影较重的区域。胶质瘤具有较强的侵袭生长特点[33, 34],加之手术、放化疗等治疗方式导致术区病理组织成分复杂,内皮细胞损伤、坏死、神经胶质增生、血管壁渗出、脱髓鞘等病理变化与病灶组织同时存在,单纯应用一种技术不能满足两者鉴别诊断的研究[35],考虑到不同成像方式相互补充,可以提供病灶不同层面信息。本研究将ADC纳入合成MRI定量参数中构建多参数联合模型,结果显示多参数联合模型的诊断效能最高,AUC达0.901,敏感度、特异度均较单参数模型提高。

3.5 本研究的局限性

       (1)本研究为单中心研究样本量较少,大多病例依据影像学随访分组,有准确病理结果的病例较少;(2)本研究使用最大强化截面的单一轴向平面作为ROI,而不是整个病灶区域,可能与整体强化区域存在偏差,有待进一步改善。

4 结论

       总之,合成MRI、MUSE-DWI两种技术联合分别从组织弛豫时间、微观环境水分子运动能力对胶质瘤术后的异常强化区域进行评估,两者联合在鉴别PD和TRC中具有一定价值,为临床诊疗提供影像学依据。

[1]
葛鑫, 杨治花, 申颖, 等. 合成MRI预测胶质瘤异柠檬酸脱氢酶1基因型的价值[J]. 中华医学杂志, 2023, 103(33): 2619-2623. DOI: 10.3760/cma.j.cn112137-20230130-00137.
GE X, YANG Z H, SHEN Y, et al. Application of synthetic MRI in predicting isocitrate dehydrogenase 1 genotypes in gliomas[J]. Natl Med J China, 2023, 103(33): 2619-2623. DOI: 10.3760/cma.j.cn112137-20230130-00137.
[2]
WU X, LIANG X, WANG X, et al. Differentiating high-grade glioma recurrence from pseudoprogression: Comparing diffusion kurtosis imaging and diffusion tensor imaging[J/OL]. Eur J Radiol, 2021, 135: 109445 [2024-01-22]. https://doi.org/10.1016/j.ejrad.2020.109445. DOI: 10.1016/j.ejrad.2020.109445.
[3]
TANENBAUM L N, TSIOURIS A J, JOHNSON A N, et al. Synthetic MRI for clinical neuroimaging: Results of the magnetic resonance image compilation (MAGiC) prospective, multicenter, multireader trial[J]. AJNR Am J Neuroradiol, 2017, 38(6): 1103-1110. DOI: 10.3174/ajnr.A5227.
[4]
KONAR A S, PAUDYAL R, SHAH A D, et al. Qualitative and quantitative performance of magnetic resonance image compilation (MAGiC) method: An exploratory analysis for head and neck imaging[J/OL]. Cancers (Basel), 2022, 14(15): 3624 [2024-01-22]. https://doi.org/10.3390/cancers14153624. DOI: 10.3390/cancers14153624.
[5]
MATSUDA M, TSUDA T, EBIHARA R, et al. Triple-negative breast cancer on contrast-enhanced MRI and synthetic MRI: A comparison with non-triple-negative breast carcinoma[J/OL]. Eur J Radiol, 2021, 142: 109838 [2024-01-22]. https://doi.org/10.1016/j.ejrad.2021.109838. DOI: 10.1016/j.ejrad.2021.109838.
[6]
SUH Y H, KANG Y, BAEK M J, et al. T2 relaxation time shortening in the cochlea of patients with sudden sensory neuronal hearing loss: a retrospective study using quantitative synthetic magnetic resonance imaging[J]. Eur Radiol, 2021, 31(9): 6438-6445. DOI: 10.1007/s00330-021-07749-5.
[7]
MCKAY J A, CHURCH A L, RUBIN N, et al. A comparison of methods for high-spatial-resolution diffusion-weighted imaging in breast MRI[J]. Radiology, 2020, 297(2): 304-312. DOI: 10.1148/radiol.2020200221.
[8]
CHANG H C, CHEN G, CHUNG H W, et al. Multi‐shot diffusion‐weighted MRI with multiplexed sensitivity encoding (MUSE) in the assessment of active inflammation in Crohn's disease[J]. J Magn Reson Imaging, 2022, 55(1): 126-137. DOI: 10.1002/jmri.27801.
[9]
JOHANSSON J, LAGERSTRAND K, IVARSSON L, et al. Brain diffusion MRI with multiplexed sensitivity encoding for reduced distortion in a pediatric patient population[J]. Magn Reson Imaging, 2022, 87: 97-103. DOI: 10.1016/j.mri.2022.01.003.
[10]
HERBST M, ZAHNEISEN B, KNOWLES B, et al. Prospective motion correction of segmented diffusion weighted EPI[J]. Magn Reson Med, 2015, 74(6): 1675-1681. DOI: 10.1002/mrm.25547.
[11]
GE X, WANG M, MA H, et al. Investigated diagnostic value of synthetic relaxometry, three-dimensional pseudo-continuous arterial spin labelling and diffusion-weighted imaging in the grading of glioma[J]. Magn Reson Imaging, 2022, 86: 20-27. DOI: 10.1016/j.mri.2021.11.006.
[12]
马文富, 葛鑫, 党佩, 等. Sy-MRI联合DWI在预测胶质瘤MGMT甲基化中的应用[J]. 磁共振成像, 2023, 14(7): 18-24, 48. DOI: 10.12015/issn.1674-8034.2023.07.004.
MA W F, GE X, DANG P, et al. Application of Sy-MRI combined with DWI in predicting MGMT methylation in glioma[J]. Chin J Magn Reson Imaging, 2023, 14(7): 18-24, 48. DOI: 10.12015/issn.1674-8034.2023.07.004.
[13]
葛鑫, 孙胜玉, 刘文潇, 等. 合成MRI联合三维动脉自旋标记成像预测弥漫性胶质瘤分级及肿瘤细胞增殖活性的研究[J]. 中华放射学杂志, 2022, 56(5): 524-529. DOI: 10.3760/cma.j.cn112149-20210617-00569.
GE X, SUN S Y, LIU W X, et al. Prediction of diffuse glioma grade and tumor cell proliferative activity by synthetic MRI combined with three-dimensional arterial spin labeling imaging[J]. Chin J of Radiol, 2022, 56(5): 524-529. DOI: 10.3760/cma.j.cn112149-20210617-00569.
[14]
KIKUCHI K, TOGAO O, YAMASHITA K, et al. Comparison of diagnostic performance of radiologist- and AI-based assessments of T2-FLAIR mismatch sign and quantitative assessment using synthetic MRI in the differential diagnosis between astrocytoma, IDH-mutant and oligodendroglioma, IDH-mutant and 1p/19q-codeleted[J/OL]. Neuroradiology, 2024 [2024-01-22]. https://doi.org/10.1007/s00234-024-03288-0. DOI: 10.1007/s00234-024-03288-0.
[15]
ELLINGSON B M, WEN P Y, CLOUGHESY T F. Modified criteria for radiographic response assessment in glioblastoma clinical trials[J]. Neurotherapeutics, 2017, 14(2): 307-320. DOI: 10.1007/s13311-016-0507-6.
[16]
DASTMALCHIAN S, KILINC O, ONYEWADUME L, et al. Radiomic analysis of magnetic resonance fingerprinting in adult brain tumors[J]. Eur J Nucl Med Mol Imaging, 2021, 48(3): 683-693. DOI: 10.1007/s00259-020-05037-w.
[17]
BLYSTAD I, WARNTJES J B M, SMEDBY Ö, et al. Quantitative MRI using relaxometry in malignant gliomas detects contrast enhancement in peritumoral oedema[J/OL]. Sci Rep, 2020, 10(1): 17986 [2024-01-23]. https://doi.org/10.1038/s41598-020-75105-6. DOI: 10.1038/s41598-020-75105-6.
[18]
MULLER A, JURCOANE A, KEBIR S, et al. Quantitative T1-mapping detects cloudy-enhancing tumor compartments predicting outcome of patients with glioblastoma[J]. Cancer Med, 2017, 6(1): 89-99. DOI: 10.1002/cam4.966.
[19]
HATTINGEN E, MULLER A, JURCOANE A, et al. Value of quantitative magnetic resonance imaging T1-relaxometry in predicting contrast-enhancement in glioblastoma patients[J]. Oncotarget, 2017, 8(32): 53542-53551. DOI: 10.18632/oncotarget.18612.
[20]
谢佳培, 张卫东, 朱婧怡, 等. 磁共振T1、T2值在脑胶质瘤分级及细胞增殖活性预测中的临床价值[J]. 磁共振成像, 2021, 12(1): 15-20. DOI: 10.12015/issn.1674-8034.2021.01.004.
XIE J P, ZhANG W D, ZHU J Y, et al. The clinical value of T1 and T2 values in predicting brain glioma grading and cell proliferation activity[J]. Chin J Magn Reson Imaging, 2021, 12(1): 15-20. DOI: 10.12015/issn.1674-8034.2021.01.004.
[21]
LESCHER S, JURCOANE A, VEIT A, et al. Quantitative T1 and T2 mapping in recurrent glioblastomas under bevacizumab: earlier detection of tumor progression compared to conventional MRI[J]. Neuroradiology, 2015, 57(1): 11-20. DOI: 10.1007/s00234-014-1445-9.
[22]
WANG B, ZHANG Y, ZHAO B, et al. Postcontrast T1 mapping for differential diagnosis of recurrence and radionecrosis after gamma knife radiosurgery for brain metastasis[J]. AJNR Am J Neuroradiol, 2018, 39(6): 1025-1031. DOI: 10.3174/ajnr.A5643.
[23]
KANG K M, CHOI S H, HWANG M, et al. Application of synthetic MRI for direct measurement of magnetic resonance relaxation time and tumor volume at multiple time points after contrast administration: Preliminary results in patients with brain metastasis[J/OL]. Korean J Radiol, 2018, 19(4): 783 [2024-01-23]. https://doi.org/10.3348/kjr.2018.19.4.783. DOI: 10.3348/kjr.2018.19.4.783.
[24]
ZACH L, GUEZ D, LAST D, et al. Delayed contrast extravasation MRI for depicting tumor and non-tumoral tissues in primary and metastatic brain tumors[J/OL]. PLoS One, 2012, 7(12): e52008 [2024-01-23]. https://doi.org/10.1371/journal.pone.0052008. DOI: 10.1371/journal.pone.0052008.
[25]
AKBARI H, RATHORE S, BAKAS S, et al. Histopathology‐validated machine learning radiographic biomarker for noninvasive discrimination between true progression and pseudo‐progression in glioblastoma[J]. Cancer, 2020, 126(11): 2625-2636. DOI: 10.1002/cncr.32790.
[26]
CHEN X, ZHANG Y, CAO Y, et al. A feasible study on using multiplexed sensitivity-encoding to reduce geometric distortion in diffusion-weighted echo planar imaging[J]. Magn Reson Imaging, 2018, 54: 153-159. DOI: 10.1016/j.mri.2018.08.022.
[27]
CHEN N, GUIDON A, CHANG H, et al. A robust multi-shot scan strategy for high-resolution diffusion weighted MRI enabled by multiplexed sensitivity-encoding (MUSE)[J]. NeuroImage, 2013, 72: 41-47. DOI: 10.1016/j.neuroimage.2013.01.038.
[28]
LI J, BAI Y, WU L, et al. Synthetic relaxometry combined with MUSE DWI and 3D-pCASL improves detection of hippocampal sclerosis[J/OL]. Eur J Radiol, 2022, 157: 110571 [2024-01-23]. https://doi.org/10.1016/j.ejrad.2022.110571. DOI: 10.1016/j.ejrad.2022.110571.
[29]
ZHANG H, MA L, SHU C, et al. Diagnostic accuracy of diffusion MRI with quantitative ADC measurements in differentiating glioma recurrence from radiation necrosis[J]. J Neurol Sci, 2015, 351(1-2): 65-71. DOI: 10.1016/j.jns.2015.02.038.
[30]
WERNER J, STOFFELS G, LICHTENSTEIN T, et al. Differentiation of treatment-related changes from tumour progression: a direct comparison between dynamic FET PET and ADC values obtained from DWI MRI[J]. Eur J Nucl Med Mol Imaging, 2019, 46(9): 1889-1901. DOI: 10.1007/s00259-019-04384-7.
[31]
CARRETE L R, YOUNG J S, CHA S. Advanced imaging techniques for newly diagnosed and recurrent gliomas[J/OL]. Front Neurosci, 2022, 16: 787755 [2024-01-23]. https://doi.org/10.3389/fnins.2022.787755. DOI: 10.3389/fnins.2022.787755.
[32]
KIM Y, KIM M, GHO S, et al. Comparison of multiplexed sensitivity encoding and single-shot echo-planar imaging for diffusion-weighted imaging of the liver[J/OL]. Eur J Radiol, 2020, 132: 109292 [2024-01-23]. https://doi.org/10.1016/j.ejrad.2020.109292. DOI: 10.1016/j.ejrad.2020.109292.
[33]
GUO Z, SU Z, WEI Y, et al. Pyroptosis in glioma: Current anagement and future application[J]. Immunol Rev, 2024, 321(1): 152-168. DOI: 10.1111/imr.13294.
[34]
RUDIE J D, RAUSCHECKER A M, BRYAN R N, et al. Emerging applications of artificial intelligence in neuro-oncology[J]. Radiology, 2019, 290(3): 607-618. DOI: 10.1148/radiol.2018181928.
[35]
任龙飞, 张辉, 王效春, 等. 磁共振动态对比增强联合扩散加权成像鉴别脑高级别胶质瘤复发和治疗后反应的初步研究[J]. 磁共振成像, 2019, 10(9): 655-660. DOI: 10.12015/issn.1674-8034.2019.09.004
REN L F, ZHANG H, WANG X C, et al. Preliminary study of magnetic resonance dynamic contrast enhancement combined with diffusion weighted imaging to identify high grade glioma recurrence and treatment-related changes[J]. Chin J Magn Reson Imaging, 2019, 10(9): 655-660. DOI: 10.12015/issn.1674-8034.2019.09.004.

上一篇 基于低灌注强度比值的侧支循环对晚期时间窗急性脑卒中预后预测的研究
下一篇 中等强度有氧运动对女大学生大脑结构影响的VBM研究
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2