分享:
分享到微信朋友圈
X
综述
磁共振脂肪定量技术在肝脏肿瘤中的应用
夏娟 李梁 余成新 潘君龙 胡军

Cite this article as: XIA J, LI L, YU C X, et al. Application of magnetic resonance fat quantification technique in liver tumors[J]. Chin J Magn Reson Imaging, 2024, 15(2): 224-228.本文引用格式夏娟, 李梁, 余成新, 等. 磁共振脂肪定量技术在肝脏肿瘤中的应用[J]. 磁共振成像, 2024, 15(2): 224-228. DOI:10.12015/issn.1674-8034.2024.02.037.


[摘要] 体内器官的脂肪堆积会增加包括肝良性病变在内的多种疾病癌变的风险。近年来,脂肪性肝病越来越被认为是肝细胞癌的危险因素,与代谢相关脂肪性肝病相关的肝细胞癌已是全球日益增加的医疗负担。肝肿瘤瘤内及瘤周脂肪含量在肿瘤的诊断、鉴别、分级及预后等方面有一定价值。肝移植作为肝肿瘤治疗手段之一越来越受到重视,肝脏脂肪变性与肝移植术前评估及术后监测密切相关。除此之外,肿瘤治疗过程中所致肝损伤也与肝脏脂肪含量直接相关。因此,肝脏脂肪定量在肝脏肿瘤的发生发展、诊断治疗及预后评估中具有重要意义。本文综述了磁共振波谱成像(magnetic resonance spectroscopy, MRS)、化学位移成像(chemical shift imaging, CSI)以及多回波Dixon(包括IDEAL-IQ和mDixon-Quant)等MRI脂肪定量技术在肝脏肿瘤中的应用,旨在提供更精准定量肝脏脂肪的影像标志物,为肿瘤治疗方式的选择和疗效评估提供客观和科学的依据,用以帮助临床对肝脏肿瘤进行无创诊断及治疗评估。
[Abstract] Accumulation of fat in body organs increases the risk of cancer in various diseases, including benign liver lesions. In recent years, fatty liver disease has been increasingly recognized as a risk factor for hepatocellular carcinoma, and hepatocellular carcinoma associated with metabolism-associated fatty liver disease has been a growing healthcare burden worldwide. The intratumoral and peritumoral fat content of liver tumors is valuable in the diagnosis, differentiation, grading, and prognosis of liver tumors. Liver transplantation has received increasing attention as one of the therapeutic means for liver tumors, and hepatic steatosis is closely related to preoperative evaluation and postoperative monitoring of liver transplantation. In addition, liver injury caused during tumor treatment is also directly related to liver fat content. Therefore, liver fat quantification is of great significance in developing liver tumors, diagnosis and treatment, and prognosis assessment. In this paper, we review the application of MRI fat quantification techniques, including magnetic resonance spectroscopy (MRS), chemical shift imaging (CSI), and multi-echo Dixon techniques (including IDEAL-IQ and mDixon-Quant) in liver tumors aim to provide more accurate quantitative liver fat imaging marker, to provide an objective and scientific basis for the selection of tumor treatment modalities and the assessment of efficacy, which can be used to help the clinical non-invasive diagnosis and therapeutic evaluation of liver tumors.
[关键词] 肝脏肿瘤;脂肪定量;磁共振成像;多回波Dixon技术
[Keywords] liver tumor;fat quantification;magnetic resonance imaging;multiple echo Dixon technique

夏娟    李梁    余成新 *   潘君龙    胡军   

三峡大学第一临床医学院放射科,宜昌 443003

通信作者:余成新,E-mail:1542353879@qq.com

作者贡献声明::余成新设计本综述的方案,对稿件重要内容进行了修改;夏娟起草和撰写稿件,获取、分析和解释本综述的文献;李梁、潘君龙、胡军获取、分析或解释本研究的数据,对稿件重要内容进行了修改;胡军获得了湖北省卫生厅科研项目资助;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 湖北省卫生厅科研项目 WJ2021M065
收稿日期:2023-11-11
接受日期:2024-02-02
中图分类号:R445.2  R735.7 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2024.02.037
本文引用格式夏娟, 李梁, 余成新, 等. 磁共振脂肪定量技术在肝脏肿瘤中的应用[J]. 磁共振成像, 2024, 15(2): 224-228. DOI:10.12015/issn.1674-8034.2024.02.037.

0 引言

       肝脏是肿瘤好发部位之一,恶性肿瘤多见,以原发性肝癌和肝转移瘤为主。肝细胞癌(hepatocellular carcinoma, HCC)是肝癌的主要组织学亚型,占全球原发性肝癌的80%以上[1],是全球癌症相关死亡的第四大常见原因[2]。在肝脏成像报告和数据系统(Liver Imaging Reporting and Data System, LI-RADS)中,已经确定了几个有利于诊断HCC的辅助特征,其中之一是病灶内脂肪的存在[3]。瘤内脂肪被认为与HCC的肿瘤分级及预后密切相关[4],含脂肪HCC往往有更好的预后[5, 6]。也有研究发现瘤内脂肪含量对于不同肿瘤有一定的鉴别意义[7, 8]。化疗是目前针对肿瘤患者最有效和应用最广泛的治疗方案之一[9],而脂肪变性是化疗后肝损伤的首要表现形式[10],因此肝脏脂肪定量可以用于肿瘤患者化疗后肝损伤评估。随着肝癌肝移植标准的更新,扩大了受者人群。中国肝移植注册中心数据显示,2018至2020年国内肝移植年平均约6 000例[11]。肝脂肪变性被认为是预测移植后供肝损伤最重要的预后组织学参数[12]。基于以上发现,肝脏脂肪定量有着重要意义。虽然活检仍然是肝脏脂肪定量的金标准[13],但由于其侵入性、采样偏倚和主观变异性致使其临床应用价值受限[14, 15]。影像学检查被越来越多地应用于肝脏脂肪定量,现已有多种MRI技术可以用来量化肝脏脂肪,其中MRS、CSI以及多回波Dixon技术(包括IDEAL-IQ和mDixon-Quant等)是较为准确的脂肪定量技术[8, 16, 17, 18],多回波Dixon技术生成的质子密度脂肪分数(proton density fat fraction, PDFF)图是一种准确的定量成像生物标志物[19, 20],具有很高的可重复性。本文综述了MRI脂肪定量技术在肝脏肿瘤中的应用进展,为未来更准确、无创地对肝脏肿瘤进行诊断、治疗及预后评估提供新方法,指导临床早期评估肝肿瘤并进行相应的干预,改变疾病转归,实现精准诊疗。

1 MRS在肝脏肿瘤中的应用

       氢质子磁共振波谱(proton magnetic resonance spectroscopy, 1H-MRS)是最早被报道为量化肝脏脂肪的MRI方法[16],可以无创、准确地定量肝脏脂肪[17, 21]。在肝脏的MRS光谱上,大多数可见峰是由水和脂肪产生的,水在4.7 ppm处以单个峰的形式出现,脂肪以多个峰的形式出现。MRS可以为正常肝组织和脂肪肝(如代谢相关脂肪性肝病)的化学成分对比提供重要信息,该方法具有替代肝活检诊断弥漫性脂肪浸润的潜力[21, 22]。国外曾有文章报道称,以组织病理学检查为参考标准,MRS定量肝脏脂肪的敏感度为73%~89%,特异度为92%~96%[23]。此外,通过MRS可以在肝脏任何位置测量肝组织的脂肪含量,以评估局灶性病变。

       LIAO等[24]通过使用1H-MRS检测兔肝癌早期代谢情况,并探讨其与肝癌直径、体积等参数的相关性,认为1H-MRS有助于早期肝癌的诊断。相似的,有研究发现基于1H-MRS的代谢组学是早期诊断HCC及探究HCC进展情况的生物标志物[25, 26]。肝母细胞瘤(hepatoblastoma, HBL)是儿童期最常见的恶性肿瘤,有研究利用高分辨率魔角旋转磁共振波谱(high-resolution magic-angle-spinning, HR-MAS)等技术研究了HBL代谢组学,揭示了HBL不同代谢谱和脂质代谢的改变,为HBL早期诊断和个体化治疗提供指导[27]。LI等[28]的报告指出,从正常肝脏局部肝组织获得水信号强度的最大值和最小值之间存在1.8倍的差异,而在局部肝肿瘤获得水信号强度的最大值和最小值之间存在3.2倍的差异,脂质峰可以表现出比水峰更大的变化,因此可以通过MRS来鉴别肝脏良恶性病变。在肝脏肿瘤患者治疗中,肝移植作为终末期治疗手段,由于现阶段供体稀缺、治疗难度大及死亡率高,术前术后评估至关重要。肝脏脂肪变性会影响肝移植术后的发病率及死亡率,有研究用1H-MRS检查了47名肝移植供体和101名肝移植受体,发现1H-MRS测量的脂肪变性分级与组织学结果相关性良好[29]1H-MRS可以简单快速地对肝脏脂肪含量及其他成分进行体内分析,为肝移植患者代谢相关脂肪性肝病诊断提供非侵入性定量依据。

       MRS对肝脏脂肪定量与病理结果具有一致性,可以用于早期诊断恶性肿瘤、鉴别良恶性病变以及评估肿瘤治疗预后。MRS不仅可以对肝脏脂肪进行定量,还能反映病灶内其他物质的代谢情况,未来研究可以将脂质代谢与其他代谢相结合深入挖掘肝脏肿瘤的病理信息用以指导临床。但MRS感兴趣区不能覆盖整个肝脏,且后处理过程复杂,对扫描技术要求严格,在临床应用上仍具有挑战性,这也是未来需要解决的问题。

2 CSI及多回波Dixon技术在肝脏肿瘤中的应用

2.1 CSI

       CSI是一种常用的方法,基于水脂分离原理,可以得到脂肪氢质子与水分子氢质子同反相位图。NOUGARET等[8]的研究使用CSI方法量化了包括HCC、局灶性结节性增生(focal nodular hyperplasia, FNH)和肝细胞腺瘤(hepatocellular adenoma, HCA)在内的不同肝脏病灶内脂肪分数,发现病灶内脂肪分数低于2.7%提示FNH的可能性高于HCA,可以认为CSI有助于鉴别不同肝脏肿瘤。也有研究通过CSI计算HCC、非HCC及邻近正常肝实质的脂肪百分比,并进行减法评分,发现计算脂肪百分比减法评分可以区分HCC和非HCC,推测CSI显示HCC的瘤内脂肪含量可能是一种潜在的区分HCC与其他肝恶性肿瘤的成像生物标志物[30]。此外,在肿瘤患者术前化疗后的CSI图像上,可以发现肝转移瘤内出现脂肪沉积[31],未来需要进一步的研究来分析瘤内脂肪是否可以成为评估肝转移治疗反应的生物标志物。

2.2 多回波Dixon技术

       基于CSI的多回波Dixon技术,扫描一次就可以同时获取同相位、反相位、水相位和脂相位四幅图像。目前六回波序列已经应用于临床及科研中,如IDEAL-IQ(GE)、mDixon-Quant(飞利浦)等[32]。多回波Dixon技术还可得到整个肝脏范围的PDFF图像,该图像可以测量任意感兴趣区的脂肪含量(图1)。HU等[18]通过多中心、多平台、多供应商模型研究验证了MRI-PDFF的准确性。在弥漫性肝病中,MRI-PDFF已经逐步取代肝活检来诊断和监测肝脂肪变性[33, 34, 35]。有研究将MRI-PDFF测量结果与肝活检脂肪变性等级相比较,发现MRI-PDFF的变化与脂肪变性分级的变化具有相关性,证明了重复测量MRI-PDFF对预测组织学特征变化的实用性[36]。PARK等[37]用组织学脂肪分数作为参考标准,使用MRI-PDFF在接受肝脏活体肝移植的供体中进行评估,进一步研究发现了其确诊肝脂肪变性的临界值为3.5%(敏感度为73.5%;特异度为88.6%)。

       KUPCZYK等[38]研究了HCC患者病灶内脂肪含量与组织学肿瘤分级之间的可能关系,发现在肝硬化HCC患者中,MRI-PDFF可以鉴别高分化和低分化病变,其受试者工作特征(receiver operating characteristic, ROC)曲线下面积为0.81;在脂肪变性HCC患者中,MRI-PDFF鉴别诊断效能更高,其ROC曲线下面积为0.92。还有研究发现多回波Dixon技术有助于区分局灶性肝脏病变的良恶性[39]。KITAGAWA等[31]使用多回波Dixon技术对251例肝脏结节患者进行扫描,其中包括HCC、肝内胆管癌、淋巴瘤、炎性假瘤及转移等,研究表明多回波Dixon技术可能适用于不同肝脏结节的鉴别。肝肿瘤患者化疗相关肝损伤是重要的临床问题[40],MRI-PDFF可以准确检测和量化肝内脂肪,能够用于监测化疗后肝损伤[10]。近年来,将MRI-PDFF应用于肿瘤患者肝移植评估中的研究也日益增多。SATAPATHY等[41]以组织学为金标准,评估用MRI-PDFF体外测量已故供体肝脏脂肪的诊断准确性和效用,证实其可以预测肝脂肪变性相关的早期同种异体移植物功能障碍。同样的,CHEN等[12]通过对40例肝脏进行MRI-PDFF检查,发现体外MRI-PDFF定量分析是肝移植前检测肝大泡性脂肪变性非常有用的无创方法。不仅针对体外测量,还有研究将143例活体供体的肝脂肪变性通过MRI-PDFF进行分级,探讨其与肝脏再生、早期同种异体移植物功能障碍及死亡率等的相关性,发现MRI-PDFF可以作为肝活检的无创替代方案,用于量化活体供体肝脂肪变性,可靠地预测肝移植预后情况[42]。除此之外,SIDDIQUI等[43]利用MRI-PDFF对肝移植后代谢相关脂肪性肝病患者药物治疗进行监测,发现MRI-PDFF可以反映药物对肝移植受体脂肪性肝病的治疗疗效。

       综上所述,CSI与多回波Dixon技术对肝脏肿瘤诊断及鉴别有一定的帮助,但对于不同恶性肿瘤的横向对比研究较少,现有研究多针对HCC及转移瘤,较少涉及其他各类原发肿瘤,探讨不同肿瘤之间脂肪含量的差异可能是未来研究方向之一,且仍需进一步扩大研究来确定MRI-PDFF作为肝脏肿瘤新定量标志物的效用。此外,MRI-PDFF还是化疗后肝损伤及肝移植评估的重要方法,可以无创评估治疗疗效及预后,未来可以进一步推广应用于临床。

图1  使用mDixon-Quant序列扫描得到的肝肿瘤患者MRI-PDFF伪彩图,图中显示了手动放置在肝肿瘤中的感兴趣区计算的脂肪百分比为3.98%。
Fig. 1  MRI-PDFF pseudo-color image obtained from a patient with a liver tumor using the mDixon-Quant sequence scan maps of patients with liver tumors, which shows the percentage of fat calculated from the region of interest of 3.98% manually placed in the liver tumor.

3 磁共振脂肪定量技术优劣势及多模态MRI在肝脏肿瘤中的应用

       MRS相较于其他MRI脂肪定量技术对肝脏脂肪的定量测量不会受到铁沉积、纤维化和共存其他肝脏病变的影响[44]。不过MRS也存在一定的局限性:(1)MRS扫描成本较高且非常耗时;(2)MRS用于评估肿瘤内脂肪分数会受到病变大小限制,无法评估脂肪分布情况;(3)部分临床磁共振扫描仪上的系统软件难以支持MRS在肝脏中的应用,只在科研情况下能够进行;(4)MRS只能在有限数量的组织体素中测量脂肪含量,且由于体素放置很难用现有技术精准复制,该限制引入了采样变异性,导致在纵向研究中也存在一定的困难。这些也是未来研究需要重点解决的问题。CSI技术多年来一直用于评估特定区域内的脂肪含量,随着脉冲序列和重建技术的发展,多回波Dixon技术提供了一种测量肝脏脂肪含量更准确的方法,它校正了T1偏置、涡流、噪声偏置和T2*效应[45],通过对多个脂肪峰进行建模来测量PDFF。目前高场磁共振同时配备相应定量软件分析,使扫描程序和后处理操作进一步趋于简便,可以直接生成整个肝脏的PDFF图,对脂肪分布情况进行分析。有研究发现MRS与多回波Dixon技术在量化肝脏脂肪含量和监测治疗效果方面具有较好的一致性和相关性[32, 46, 47],如今MRI-PDFF已经是公认的精确量化肝脏脂肪的成像生物标志物[19, 20],由于多回波Dixon技术有更大的实用性和更低的采样变异性,可以在临床上进行推广应用。

       MRI脂肪定量技术与其他MRI序列相结合的多模态MRI不仅可以协同整合优点,还可以克服每种成像序列的局限性,从而提供更为准确的影像信息。有研究联合对比增强MRI、弥散加权成像和1H-MRS检测可切除性肝转移的早期形态学和代谢变化,发现其在预测肝转移对化疗和靶向药物的治疗反应和生存率方面具有一定的价值[48]。LEE等[49]在针对456例接受MRI-PDFF和MR弹性成像扫描的代谢相关脂肪性肝炎及肝硬化患者研究中发现,显著纤维化和脂肪含量减低与肝失代偿、HCC患病率和死亡率的增加有关。与之相似,有研究联合MRI-PDFF和MR弹性成像在HCC患者治疗过程中进行监测,发现肝脏硬度和脂肪含量可预测HCC患者的肝脏相关并发症、肿瘤复发情况和死亡率[50]。在未来HCC患者的MRI监测方案中,可以考虑加入MR弹性成像和MRI-PDFF。WANG等[51]通过多回波Dixon技术和体素内不相干运动扩散加权技术对63例经病理证实的结直肠癌肝转移患者进行评估,并联合临床相关生化指标,发现MRI-PDFF、扩散系数及25-羟基维生素D3水平是准确预测肝转移患者化疗诱导性肝损伤的生物标志物,且有助于肝损伤分级。此外,肿瘤患者化疗所致肝损伤会诱导产生肝假瘤,其病理特征为肝细胞窦样扩张和充血,伴有炎性细胞浸润和纤维化,其影像表现与肝转移类似,则需要联合MRI-PDFF及弥散加权成像等多模态MRI进行鉴别诊断[10]

       多模态MRI在对肝脏肿瘤诊断、治疗及预后评估中起着重要作用,将多模态MRI技术更有效的结合深入研究制订完整可靠的成像方案是目前该领域的重要研究方向,还可与临床相关指标联合分析得到更全面的信息,用以更准确地评估肝肿瘤治疗及预后情况。

4 小结与展望

       MRI脂肪定量技术区别于以往MRI影像中仅依靠肉眼观察信号强度的诊断方式,在肝脏肿瘤诊断及鉴别诊断、预后、化疗后肝损伤、肝移植等评估上具有重要意义。临床上肝脏肿瘤的影像诊断和治疗监测通常使用对比增强MRI扫描,但其禁用于肾功能不全患者,且对肝脏肿瘤的明确诊断及亚型分析仍依赖于病理结果。未来若进一步研究病灶内脂肪含量与肝肿瘤各亚型之间的相关性,则可以使用MRI-PDFF对肝肿瘤进行非侵入性亚型分析,从而提高其在肝脏肿瘤中的临床实用性。

       目前,MRI脂肪定量技术在肝脏肿瘤的应用研究还需要从以下几方面进一步深入:(1)需进一步扩大样本量,找到脂肪含量在肝肿瘤诊断及评估中更精确的临界值,以提高诊断准确率;(2)未来MRS的研究方向应更倾向于多体素MRS以比较肝脏各个区域,且需要更严格的系统标准以解决采集时间较长及后处理复杂等问题,同时与MRI其他模态兼容;(3)进一步优化多模态MRI序列并建立更为完善、规范的扫描方案;(4)未来的研究还可以通过人工智能对整个肝脏进行分割,将肝脏脂肪定量结合其他定量肝脏特征(如铁含量、纤维化等)进行放射组学分析,找到可以对肝脏肿瘤发生发展及预后进行指标监测的特定区域。总之,肝脏脂肪定量技术无论作为科研手段还是应用于临床,都有着十分乐观的应用前景。

[1]
LLOVET J M, KELLEY R K, VILLANUEVA A, et al. Hepatocellular carcinoma[J/OL]. Nat Rev Dis Primers, 2021, 7(1): 6 [2023-09-08]. https://pubmed.ncbi.nlm.nih.gov/33479224/. DOI: 10.1038/s41572-020-00240-3.
[2]
YANG J D, HAINAUT P, GORES G J, et al. A global view of hepatocellular carcinoma: trends, risk, prevention and management[J]. Nat Rev Gastroenterol Hepatol, 2019, 16(10): 589-604. DOI: 10.1038/s41575-019-0186-y.
[3]
CHERNYAK V, FOWLER K J, KAMAYA A, et al. Liver imaging reporting and data system (LI-RADS) version 2018: imaging of hepatocellular carcinoma in at-risk patients[J]. Radiology, 2018, 289(3): 816-830. DOI: 10.1148/radiol.2018181494.
[4]
HERMIDA M, PREEL A, ASSENAT E, et al. Small steatotic HCC: a radiological variant associated with improved outcome after ablation[J]. Hepatol Commun, 2021, 5(4): 689-700. DOI: 10.1002/hep4.1661.
[5]
SIRIPONGSAKUN S, LEE J K, RAMAN S S, et al. MRI detection of intratumoral fat in hepatocellular carcinoma: potential biomarker for a more favorable prognosis[J]. AJR Am J Roentgenol, 2012, 199(5): 1018-1025. DOI: 10.2214/AJR.12.8632.
[6]
YONEDA N, MATSUI O, KOBAYASHI S, et al. Current status of imaging biomarkers predicting the biological nature of hepatocellular carcinoma[J]. Jpn J Radiol, 2019, 37(3): 191-208. DOI: 10.1007/s11604-019-00817-3.
[7]
MARTÍN J, SENTÍS M, ZIDAN A, et al. Fatty metamorphosis of hepatocellular carcinoma: detection with chemical shift gradient-echo MR imaging[J]. Radiology, 1995, 195(1): 125-130. DOI: 10.1148/radiology.195.1.7892452.
[8]
NOUGARET S, MONSONIS B, MOLINARI N, et al. Quantification of liver fat content in liver and primary liver lesions using triple-echo-gradient-echo MRI[J]. Eur Radiol, 2020, 30(9): 4752-4761. DOI: 10.1007/s00330-020-06757-1.
[9]
CORRIAS G, ERTA M, SINI M, et al. Comparison of multimaterial decomposition fat fraction with DECT and proton density fat fraction with IDEAL IQ MRI for quantification of liver steatosis in a population exposed to chemotherapy[J/OL]. Dose Response, 2021, 19(2): 1559325820984938 [2023-09-10]. https://pubmed.ncbi.nlm.nih.gov/33958978/. DOI: 10.1177/1559325820984938.
[10]
DONATI F, CIONI D, GUARINO S, et al. Chemotherapy-induced liver injury in patients with colorectal liver metastases: findings from MR imaging[J/OL]. Diagnostics, 2022, 12(4): 867 [2023-09-10]. https://pubmed.ncbi.nlm.nih.gov/35453915/. DOI: 10.3390/diagnostics12040867.
[11]
中国医师协会器官移植医师分会, 中华医学会器官移植学分会肝移植学组. 中国肝癌肝移植临床实践指南(2021版)[J/OL]. 中华移植杂志(电子版), 2021, 15(6): 321-328 [2024-01-24]. https://zhyzzz.cma-cmc.com.cn/CN/10.3877/cma.j.issn.1674-3903.2021.06.001. DOI: 10.3877/cma.j.issn.1674-3903.2021.06.001.
ZHENG S S, DONG J H, DOU K F, et al. Clinical practice guidelines of liver transplantation for liver cancer in China (2021 edition)[J/OL]. Chin J Transplant Electron Ed, 2021, 15(6): 321-328 [2024-01-24]. https://zhyzzz.cma-cmc.com.cn/CN/10.3877/cma.j.issn.1674-3903.2021.06.001. DOI: 10.3877/cma.j.issn.1674-3903.2021.06.001.
[12]
CHEN G, JIANG J P, WANG X Q, et al. Evaluation of hepatic steatosis before liver transplantation in ex vivo by volumetric quantitative PDFF-MRI[J]. Magn Reson Med, 2021, 85(5): 2805-2814. DOI: 10.1002/mrm.28592.
[13]
TAMAKI N, AJMERA V, LOOMBA R. Non-invasive methods for imaging hepatic steatosis and their clinical importance in NAFLD[J]. Nat Rev Endocrinol, 2022, 18(1): 55-66. DOI: 10.1038/s41574-021-00584-0.
[14]
DAVISON B A, HARRISON S A, COTTER G, et al. Suboptimal reliability of liver biopsy evaluation has implications for randomized clinical trials[J]. J Hepatol, 2020, 73(6): 1322-1332. DOI: 10.1016/j.jhep.2020.06.025.
[15]
HUPFELD S, PISCHEL D, JECHOREK D, et al. MRI-based fat quantification of the liver: is it time for commercially available products?[J/OL]. Eur J Radiol, 2021, 144: 109993 [2023-09-12]. https://pubmed.ncbi.nlm.nih.gov/34656047/. DOI: 10.1016/j.ejrad.2021.109993.
[16]
REEDER S B, CRUITE I, HAMILTON G, et al. Quantitative assessment of liver fat with magnetic resonance imaging and spectroscopy[J]. J Magn Reson Imaging, 2011, 34(4): 729-749. DOI: 10.1002/jmri.22775.
[17]
BAWDEN S J, HOAD C, KAYE P, et al. Comparing magnetic resonance liver fat fraction measurements with histology in fibrosis: the difference between proton density fat fraction and tissue mass fat fraction[J]. MAGMA, 2023, 36(4): 553-563. DOI: 10.1007/s10334-022-01052-0.
[18]
HU H H, YOKOO T, BASHIR M R, et al. Linearity and bias of proton density fat fraction as a quantitative imaging biomarker: a multicenter, multiplatform, multivendor phantom study[J]. Radiology, 2021, 298(3): 640-651. DOI: 10.1148/radiol.2021202912.
[19]
马梦园, 王金洋, 李小犇, 等. 磁共振脂肪量化的研究进展及应用[J]. 磁共振成像, 2023, 14(7): 197-202. DOI: 10.12015/issn.1674-8034.2023.07.036.
MA M Y, WANG J Y, LI X B, et al. Research progress and applications of fat quantification with magnetic resonance imaging[J]. Chin J Magn Reson Imag, 2023, 14(7): 197-202. DOI: 10.12015/issn.1674-8034.2023.07.036.
[20]
AJMERA V, CEPIN S, TESFAI K, et al. A prospective study on the prevalence of NAFLD, advanced fibrosis, cirrhosis and hepatocellular carcinoma in people with type 2 diabetes[J]. J Hepatol, 2023, 78(3): 471-478. DOI: 10.1016/j.jhep.2022.11.010.
[21]
WANG Y S, YE J, CAO Y H, et al. Association of[1H]-MRS quantified liver fat content with glucose metabolism status[J/OL]. Diabetol Metab Syndr, 2020, 12: 51 [2023-09-16]. https://pubmed.ncbi.nlm.nih.gov/32528557/. DOI: 10.1186/s13098-020-00558-8.
[22]
KIM J W, LEE C H, YANG Z P, et al. The spectrum of magnetic resonance imaging proton density fat fraction (MRI-PDFF), magnetic resonance spectroscopy (MRS), and two different histopathologic methods (artificial intelligence vs. pathologist) in quantifying hepatic steatosis[J]. Quant Imaging Med Surg, 2022, 12(11): 5251-5262. DOI: 10.21037/qims-22-393.
[23]
STAREKOVA J, HERNANDO D, PICKHARDT P J, et al. Quantification of liver fat content with CT and MRI: state of the art[J]. Radiology, 2021, 301(2): 250-262. DOI: 10.1148/radiol.2021204288.
[24]
LIAO R K, TANG Z Y, LI X J, et al. Proton magnetic resonance spectroscopy at 3.0T in rabbit with VX2 liver cancer: diagnostic efficacy and correlations with tumor size[J/OL]. Front Oncol, 2022, 12: 846308 [2023-09-16]. https://pubmed.ncbi.nlm.nih.gov/35433458/. DOI: 10.3389/fonc.2022.846308.
[25]
WANG K X, DU G H, QIN X M, et al. 1H-NMR-based metabolomics reveals the biomarker panel and molecular mechanism of hepatocellular carcinoma progression[J]. Anal Bioanal Chem, 2022, 414(4): 1525-1537. DOI: 10.1007/s00216-021-03768-9.
[26]
CASADEI-GARDINI A, DEL COCO L, MARISI G, et al. 1H-NMR based serum metabolomics highlights different specific biomarkers between early and advanced hepatocellular carcinoma stages[J/OL]. Cancers, 2020, 12(1): 241 [2023-09-18]. https://pubmed.ncbi.nlm.nih.gov/31963766/. DOI: 10.3390/cancers12010241.
[27]
TASIC L, AVRAMOVIĆ N, JADRANIN M, et al. High-resolution magic-angle-spinning NMR in revealing hepatoblastoma hallmarks[J/OL]. Biomedicines, 2022, 10(12): 3091 [2023-09-18]. https://pubmed.ncbi.nlm.nih.gov/36551847/. DOI: 10.3390/biomedicines10123091.
[28]
LI C W, KUO Y C, CHEN C Y, et al. Quantification of choline compounds in human hepatic tumors by proton MR spectroscopy at 3 T[J]. Magn Reson Med, 2005, 53(4): 770-776. DOI: 10.1002/mrm.20412.
[29]
BURIAN M, HAJEK M, SEDIVY P, et al. Lipid profile and hepatic fat content measured by 1H MR spectroscopy in patients before and after liver transplantation[J/OL]. Metabolites, 2021, 11(9): 625 [2024-01-07]. https://pubmed.ncbi.nlm.nih.gov/34564441/. DOI: 10.3390/metabo11090625.
[30]
OZTURK K, SOYLU E, YAZICI Z, et al. Differentiation of hepatocellular carcinoma from non-hepatocellular malignant tumours of liver by chemical-shift MRI at 3 T[J]. Clin Radiol, 2019, 74(10): 797-804. DOI: 10.1016/j.crad.2019.06.006.
[31]
KITAGAWA T, KOZAKA K, MATSUBARA T, et al. Fat fraction and R2 * values of various liver masses: initial experience with 6-point Dixon method on a 3T MRI system[J/OL]. Eur J Radiol Open, 2023, 11: 100519 [2024-01-06]. https://pubmed.ncbi.nlm.nih.gov/37609047/. DOI: 10.1016/j.ejro.2023.100519.
[32]
YOKOO T, SHIEHMORTEZA M, HAMILTON G, et al. Estimation of hepatic proton-density fat fraction by using MR imaging at 3.0 T[J]. Radiology, 2011, 258(3): 749-759. DOI: 10.1148/radiol.10100659.
[33]
TAMAKI N, MUNAGANURU N, JUNG J, et al. Clinical utility of 30% relative decline in MRI-PDFF in predicting fibrosis regression in non-alcoholic fatty liver disease[J]. Gut, 2022, 71(5): 983-990. DOI: 10.1136/gutjnl-2021-324264.
[34]
YE J Z, LIN Y S, SHAO C X, et al. Comparisons of insulin resistance- and steatosis-based scores in monitoring metabolic associated fatty liver disease treatment response[J]. Ann Nutr Metab, 2023, 79(5): 448-459. DOI: 10.1159/000530531.
[35]
AJMERA V, LOOMBA R. Imaging biomarkers of NAFLD, NASH, and fibrosis[J/OL]. Mol Metab, 2021, 50: 101167 [2023-09-23]. https://pubmed.ncbi.nlm.nih.gov/33460786/. DOI: 10.1016/j.molmet.2021.101167.
[36]
JAYAKUMAR S, MIDDLETON M S, LAWITZ E J, et al. Longitudinal correlations between MRE, MRI-PDFF, and liver histology in patients with non-alcoholic steatohepatitis: analysis of data from a phase Ⅱ trial of selonsertib[J]. J Hepatol, 2019, 70(1): 133-141. DOI: 10.1016/j.jhep.2018.09.024.
[37]
PARK S, KWON J H, KIM S Y, et al. Cutoff values for diagnosing hepatic steatosis using contemporary MRI-proton density fat fraction measuring methods[J]. Korean J Radiol, 2022, 23(12): 1260-1268. DOI: 10.3348/kjr.2022.0334.
[38]
KUPCZYK P A, KURT D, ENDLER C, et al. MRI proton density fat fraction for estimation of tumor grade in steatotic hepatocellular carcinoma[J]. Eur Radiol, 2023, 33(12): 8974-8985. DOI: 10.1007/s00330-023-09864-x.
[39]
SHI G Z, CHEN H, ZENG W K, et al. R2* value derived from multi-echo Dixon technique can aid discrimination between benign and malignant focal liver lesions[J]. World J Gastroenterol, 2021, 27(12): 1182-1193. DOI: 10.3748/wjg.v27.i12.1182.
[40]
PARMAR K L, O'REILLY D, VALLE J W, et al. Prospective study of change in liver function and fat in patients with colorectal liver metastases undergoing preoperative chemotherapy: protocol for the CLiFF Study[J/OL]. BMJ Open, 2020, 10(9): e027630 [2023-09-18]. https://pubmed.ncbi.nlm.nih.gov/32967864/. DOI: 10.1136/bmjopen-2018-027630.
[41]
SATAPATHY S K, GONZALEZ H C, VANATTA J, et al. A pilot study of ex-vivo MRI-PDFF of donor livers for assessment of steatosis and predicting early graft dysfunction[J/OL]. PLoS One, 2020, 15(5): e0232006 [2024-01-06]. https://pubmed.ncbi.nlm.nih.gov/32407331/. DOI: 10.1371/journal.pone.0232006.
[42]
QI Q C, WEINSTOCK A K, CHUPETLOVSKA K, et al. Magnetic resonance imaging-derived proton density fat fraction (MRI-PDFF) is a viable alternative to liver biopsy for steatosis quantification in living liver donor transplantation[J/OL]. Clin Transplant, 2021, 35(7): e14339 [2024-01-06]. https://pubmed.ncbi.nlm.nih.gov/33963602/. DOI: 10.1111/ctr.14339.
[43]
SIDDIQUI M S, PARMAR D, SHAIKH F, et al. Saroglitazar improves nonalcoholic fatty liver disease and metabolic health in liver transplant recipients[J]. Liver Transpl, 2023, 29(9): 979-986. DOI: 10.1097/LVT.0000000000000110.
[44]
PASANTA D, HTUN K T, PAN J, et al. Magnetic resonance spectroscopy of hepatic fat from fundamental to clinical applications[J/OL]. Diagnostics, 2021, 11(5): 842 [2023-09-19]. https://pubmed.ncbi.nlm.nih.gov/34067193/. DOI: 10.3390/diagnostics11050842.
[45]
ZHANG Q H, ZHAO Y, TIAN S F, et al. Hepatic fat quantification of magnetic resonance imaging whole-liver segmentation for assessing the severity of nonalcoholic fatty liver disease: comparison with a region of interest sampling method[J]. Quant Imaging Med Surg, 2021, 11(7): 2933-2942. DOI: 10.21037/qims-20-989.
[46]
JIANG Y L, ZOU J, FAN F X, et al. Application of multi-echo Dixon and MRS in quantifying hepatic fat content and staging liver fibrosis[J/OL]. Sci Rep, 2023, 13(1): 12555 [2023-09-18]. https://pubmed.ncbi.nlm.nih.gov/37532757/. DOI: 10.1038/s41598-023-39361-6.
[47]
YANG Y, XU K H, CHEN X F, et al. The accuracy and clinical relevance of the multi-echo Dixon technique for evaluating changes to hepatic steatosis in patients with non-alcoholic fatty liver disease treated with formulated food[J]. Magn Reson Med Sci, 2023, 22(2): 263-271. DOI: 10.2463/mrms.mp.2021-0168.
[48]
UUTELA A, OVISSI A, HAKKARAINEN A, et al. Treatment response of colorectal cancer liver metastases to neoadjuvant or conversion therapy: a prospective multicentre follow-up study using MRI, diffusion-weighted imaging and 1H-MR spectroscopy compared with histology (subgroup in the RAXO trial)[J/OL]. ESMO Open, 2021, 6(4): 100208 [2024-01-03]. https://pubmed.ncbi.nlm.nih.gov/34325107/. DOI: 10.1016/j.esmoop.2021.100208.
[49]
LEE S W, HUANG D Q, BETTENCOURT R, et al. Low liver fat in non-alcoholic steatohepatitis-related significant fibrosis and cirrhosis is associated with hepatocellular carcinoma, decompensation and mortality[J]. Aliment Pharmacol Ther, 2024, 59(1): 80-88. DOI: 10.1111/apt.17783.
[50]
HUI R W, CHAN A C, LO G, et al. Magnetic resonance elastography and proton density fat fraction predict adverse outcomes in hepatocellular carcinoma[J]. Hepatol Int, 2022, 16(2): 371-380. DOI: 10.1007/s12072-022-10305-y.
[51]
WANG Q, YE F, MA P Q, et al. Quantified MRI and 25OH-VitD3 can be used as effective biomarkers for patients with neoadjuvant chemotherapy-induced liver injury in CRCLM?[J/OL]. BMC Cancer, 2020, 20(1): 767 [2024-01-04]. https://pubmed.ncbi.nlm.nih.gov/32799832/. DOI: 10.1186/s12885-020-07282-6.

上一篇 人工智能在肝纤维化影像学中的研究进展
下一篇 磁共振多模态功能成像在膀胱癌分期及分级中的应用研究进展
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2