分享:
分享到微信朋友圈
X
临床研究
MRI集成序列在强直性脊柱炎骶髂关节病变活动性评估中的诊断价值
田兆荣 张莉萍 田博 池淑红 王晶 徐奋玲 王志军 龚瑞

Cite this article as: TIAN Z R, ZHANG L P, TIAN B, et al. Quantitative evaluation of sacroiliac arthritis activity in ankylosing spondylitis based on magnetic resonance image compilation sequences[J]. Chin J Magn Reson Imaging, 2023, 14(12): 78-84.本文引用格式:田兆荣, 张莉萍, 田博, 等. MRI集成序列在强直性脊柱炎骶髂关节病变活动性评估中的诊断价值[J]. 磁共振成像, 2023, 14(12): 78-84. DOI:10.12015/issn.1674-8034.2023.12.013.


[摘要] 目的 运用MRI集成(magnetic resonanceimage compilation, MAGiC)序列定量参数对强直性脊柱炎(ankylosing spondylitis, AS)骶髂关节改变进行量化评估,以期对AS骶髂关节炎症活动性评估提供量化指标;并评价MAGiC定量参数T1、T2和PD值与Bath强直性脊柱炎疾病活动指数(Bath Ankylosing Spondylitis Disease Activity Index, BASDAI)和加拿大脊柱关节炎研究联盟(Spondyloarthritis Research Consortium of Canada, SPARCC)评分的相关性。材料与方法 回顾性分析78例AS合并骶髂关节炎患者病例和35例健康对照者资料。所有患者均进行轴位T1WI、脂肪抑制T2WI(fat-saturated T2WI, FS-T2WI)和MAGiC序列斜冠状位扫描。根据强直性脊柱炎疾病活动评分(Ankylosing Spondylitis Disease Activity Score, ASDAS)评分和C-反应蛋白(C-reactive protein, CRP)将患者分为活动组(40例)和非活动组(38例)。由两名放射科医师在MAGiC序列上测定活动组、非活动组和健康对照组骶髂关节软骨下骨髓的T1、T2和质子密度(proton density, PD)值。采用单因素方差分析对活动组、非活动组和健康对照组间T1、T2和PD值的平均值进行比较。采用受试者工作特征曲线(receiver operating characteristic, ROC)分析T1、T2和PD值对骶髂关节炎的诊断效能。采用Spearman相关性分析检验T1、T2、PD值与BASDAI和SPARCC评分的相关性。P<0.05为差异有统计学意义。结果 AS活动组骶髂关节软骨下骨髓T1值[(531.04±60.28)ms]低于非活动组[(691.50±72.44)ms]和健康对照组[(933.23±100.98)ms],差异有统计学意义(t=-11.517, P<0.001);活动组T2值[(119.00±9.56)ms]、PD值[(86.03±14.79)pu]高于非活动组[(96.61±8.86)ms、(68.12±7.77)pu]和健康对照组[(78.94±6.20)ms、(53.71±6.69)pu];差异有统计学意义(t=-15.332、15.972,P均<0.001)。MAGiC定量参数T1、T2、PD值诊断AS活动性的ROC曲线下面积(area under the curve, AUC)分别为0.965(95% CI: 0.949~0.991)、0.981(95% CI: 0.970~0.998)、0.840(95% CI: 0.842~0.923)。AS活动组骶髂关节软骨下骨髓的T1、T2和PD值与BASDAI评分呈高度相关(r=-0.771、0.914、0.846,P均<0.001);与SPARCC评分呈高度相关(r=-0.924、0.915、0.938,P均<0.001)。结论 MAGiC序列定量参数可定量评估AS的活动性,能提供有效量化指标,尤其是T2值可以作为骶髂关节炎活动性的生物学标志物,为临床诊断提供影像学依据。
[Abstract] Objective To explore the feasibility of using magnetic resonance image compilation (MAGiC) parameters to quantitatively evaluate changes of sacroiliac joint in ankylosing spondylitis (AS), in order to provide a quantitative index for the evaluation of sacroiliac joint inflammatory activity in AS. And to evaluate the correlations of T1, T2 and proton density (PD) values with Bath Ankylosing Spondylitis Disease Activity Index (BASDAI) and Spondyloarthritis Research Consortium of Canada (SPARCC) scores.Materials and Methods A total of 78 AS patients with sacroiliitis and 35 healthy controls were enrolled. All patients were scanned using a GE SIGNATM Architect 3.0 T MRI scanner by T1WI, fat-saturated T2-weighted imaging (FS-T2WI) and MAGiC sequence of the sacroiliac joints. According to Ankylosing Spondylitis Disease Activity Score (ASDAS) scores and C-reactive protein (CRP), the 78 patients were divided into an active group (40 cases) and an inactive group (38 cases). The T1, T2 and PD values of the subchondral bone marrow were measured in the active group, the inactive group, and the healthy control group using the MAGiC sequence. The T1, T2 and PD values of the active, inactive, and healthy groups were compared using one-way analysis of variance (ANOVA). Receiver operating characteristic (ROC) curves were used to analyze the diagnostic efficacy of T1、T2 and PD values for sacroiliitis. The correlations of the T1, T2 and PD values with the BASDAI and SPARCC scores were analyzed using Spearman's rho.Results The T1 values [(531.04±60.28) ms] in the active group were lower than those in the inactive group [(691.50±72.44) ms], and lower than those in the healthy control group [(933.23±100.98) ms], t=-11.517, P<0.001. T2 and PD values in the active group [(119.00±9.56) ms, (86.03±14.79) pu] were both higher than those in the inactive group [(96.61±8.86) ms, (68.12±7.77) pu], and higher than those in the healthy control group [(78.94±6.20) ms, (53.71±6.69) pu], t=-15.332, 15.972, all P<0.001; the area under the ROC curve (AUC) of T1, T2 and PD values between the active and inactive groups were 0.965 (95% CI: 0.949-0.991), 0.981 (95% CI: 0.970-0.998), 0.840 (95% CI: 0.842-0.923), respectively. The T1, T2 and PD values of the AS patients were positively correlated with BASDAI scores, and the correlation coefficients (r) were -0.771, 0.914 and 0.846 (all P<0.001), respectively. And positively correlated with BASDAI scores, and the correlation coefficients (r) were -0.924, 0.915 and 0.938 (all P<0.001), respectively.Conclusions MAGiC parameters can be used to quantitatively assess the activity of AS, especially, T2 value can serve as a biological marker for the activity of sacroiliac arthritis, providing imaging basis for clinical diagnosis.
[关键词] 强直性脊柱炎;骶髂关节炎;磁共振成像;磁共振成像集成序列;活动性
[Keywords] ankylosing spondylitis;sacroiliitis;magnetic resonance imaging;magnetic resonance image compilation;activity

田兆荣 1   张莉萍 1   田博 1   池淑红 2   王晶 3   徐奋玲 4   王志军 1   龚瑞 1*  

1 宁夏医科大学总医院放射科,银川 750001

2 宁夏医科大学总医院风湿科,银川 750001

3 宁夏石嘴山市第三人民医院放射科,石嘴山 750002

4 宁夏医科大学,银川 750001

通信作者:龚瑞,E-mail:ruigong918@163.com

作者贡献声明:龚瑞设计本研究的方案,对稿件重要内容进行了修改;田兆荣起草和撰写稿件,获取、分析和解释本研究的数据;张莉萍、田博、池淑红,王晶、徐奋玲、王志军获取、分析或解释本研究的数据,对稿件重要内容进行了修改;田兆荣获得了宁夏回族自治区重点研发计划基金资助;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 宁夏回族自治区重点研发计划项目 2021BEG03033
收稿日期:2023-08-08
接受日期:2023-12-07
中图分类号:R445.2  R681.51 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2023.12.013
本文引用格式:田兆荣, 张莉萍, 田博, 等. MRI集成序列在强直性脊柱炎骶髂关节病变活动性评估中的诊断价值[J]. 磁共振成像, 2023, 14(12): 78-84. DOI:10.12015/issn.1674-8034.2023.12.013.

0 前言

       强直性脊柱炎(ankylosing spondylitis, AS)是一种血清阴性的慢性炎症性风湿性疾病,好发于青壮年,主要累及中轴骨骼(骶髂关节和脊柱)[1],通常以骶髂关节炎为首发,后期可发展为脊柱僵硬强直。有研究表明AS活动性的频繁出现是预后不良的危险因素,因此,早期监测AS的活动性,及早有效治疗能阻断炎症的进展从而防止关节骨性结构的破坏[2, 3],提高患者的生活质量,减少致残率。迄今还没有衡量AS疾病活动性的“金标准”[4]。目前,AS疾病活动性的临床评估主要依赖于红细胞沉降率(erythrocyte sedimentation rate, ESR)、C反应蛋白(C-reactive protein, CRP)水平和半定量Bath强直性脊柱炎疾病活动指数(Bath Ankylosing Spondylitis Disease Activity Index, BASDAI)评分[5],但是存在较大的变异性。因此,寻求一种快速无创的方法评估AS活动性对于早期治疗至关重要。

       骶髂关节炎是AS最重要的临床表现[6],其病理改变为关节软骨侵蚀和骨髓水肿。MRI对活动性骶髂关节炎骨髓水肿的诊断具有较高的特异性和敏感性[7]。目前,用于检测AS骶髂关节炎活动性的定量技术较多,如T2 mapping、弥散加权成像(diffusion weighted imaing, DWI)和动态对比增强(dynamic contrast enhanced, DCE)等。然而,T2 mapping因扫描时间长、可重复性差仍未广泛应用;DWI的表观弥散系数(apparent diffusion coefficient, ADC)虽对AS骶髂关节活动性具有一定价值[8],但漏诊率较高且不能单独用于临床诊断;DCE需应用对比剂而不被患者普遍接受。MRI集成(magnetic resonanceimage compilation, MAGiC)是一种非侵入性的定量技术,一次扫描可获得多组对比图像和定量图像,计算出T1、T2、质子密度(proton density, PD)值[9],实现了差异化组织成分定量,获得基于人体组织成分的量化信息,能可视化AS骶髂关节活动性和结构性病变[10, 11]。MAGiC序列已应用于中枢神经系统、乳腺和前列腺方面[12, 13],但在骨肌系统的应用较少,国内还没有利用MAGiC序列评估骶髂关节炎活动性的报道。本研究首次利用MAGiC参数定量评估AS骶髂关节活动性,为临床及早诊疗提供量化指标;并评价MAGiC序列定量参数与BASDAI和加拿大脊柱关节炎研究联盟(SPARCC)评分的相关性。

1 材料与方法

1.1 一般资料

       本研究遵守《赫尔辛基宣言》原则,经过宁夏医科大学总医院医学科研伦理审查委员会批准,免除受试者知情同意,批准号:2020-657。回顾性分析宁夏医科大学总医院2021年1月至2023年6月的AS患者病例及同期健康体检者的临床及影像资料。病例组纳入标准:(1)符合AS[12]诊断标准且行MRI检查的患者;(2)在MRI检查前1周接受ESR、CRP和人类白细胞抗原(human leucocyte antigen, HLA)-B27检测。病例组排除标准:(1)有基础疾病者(如骶髂关节外伤、手术史,严重感染或身体其他部位的恶性肿瘤);(2)MRI检查前接受相关免疫治疗者;(3)图像信噪比差不能进行数据分析。根据ASDAS评分和CRP将患者分为活动组和非活动组,非活动组ASDAS-CRP<1.3;活动组ASDAS-CRP≥1.3[14]。对照组为健康体检者。对照组纳入标准:(1)无AS家族史;(2)无下腰痛史;(3)血沉、CRP等实验室检测结果无异常,HLA-B27阴性。对照组排除标准:有骶髂关节基础疾病者。

1.2 磁共振检查

       采用GE SIGNA Architect 3.0 T扫描仪(美国通用电气医疗公司,芝加哥,美国)和32通道体相控阵线圈。所有受试者均取仰卧位,头先进。定位时线圈中心与两侧髂前上棘的连线中点重合。所有序列均在平行于骶骨平面的斜冠状面扫描获得。扫描序列包括T1WI、脂肪抑制T2WI(fat-saturated T2WI, FS-T2WI)和MAGiC。T1WI序列参数:TR 415 ms,TE Min Full,FOV 280 mm×280 mm,NEX 2,层厚4 mm,层间距1 mm,矩阵320×256;FS-T2WI序列参数:TR 3671 ms,TE 59.7 ms,FOV 280 mm×280 mm,NEX 2,层厚4 mm,层间距1 mm,矩阵288×224;MAGiC序列参数:TR 4000 ms,TE 18.5 ms,FOV 280 mm×280 mm,NEX 1,层厚4 mm,矩阵384×256。

1.3 BASDAI评分

       两名风湿科医师(一名有5年工作经验的主治医师,另一名有15年工作经验的副主任医师)采用BASDAI评分法分别对患者过去一周的症状进行评估,以两名医师评分平均值作为最终BASDAI评分结果。BASDAI评价内容包括疲乏、外周关节痛、脊柱痛、局部压痛、晨僵程度、晨僵时间等6个问题组成,让患者回答过去1周的症状。前5个问题用10 cm视觉模拟评分法(visual analogue scale, VAS)完成,最高得10分,最后1个问题根据晨僵时间长短进行评分。晨僵时间为无、30、60、90和120分钟以上,分别得0、2.5、5、7.5和10分。总评分为各项的平均得分,但第5和第6个问题均为晨僵,故先把这2项的得分相加除2而得出平均分,再作为1项与前4项结合而得出平均分。BASDAI总分最高为60分,转换为BASDAI总分0~10分,转换公式:0.2×[疲乏评分+外周关节痛评分+脊柱痛评分+局部压痛评分+(晨僵程度评分+晨僵时间评分)/2],得分越高,病情越活动,一般>4分提示病情活动。

1.4 SPARCC评分

       两名有骨骼肌肉系统MRI经验的医生(一名有5年工作经验的主治医师,另一名有15年工作经验的副主任医师)在不知道分组结果的情况下,以双盲方式独立对图像进行评分。两名医生评分的平均值作为最终得分。骶髂关节采用斜冠状位FS-T2WI序列扫描[15],共12层,中间6层进行评分。将每层骶髂关节两侧分为4个象限(每层两侧共8个区域,6层共48个区域)。评分标准:该区域有骨髓水肿为1分,无骨髓水肿为0分,总分最高48分;水肿严重程度,当一侧骶髂关节同一层的骨髓水肿信号强度接近或高于同层面的静脉信号强度时,评分为1分,水肿严重程度的最高总评分为12分;水肿深度,一侧骶髂关节病变深度每增加1 cm评分加1分,最大水肿深度总评分为12分。三者得分之和为SPARCC得分,SPARCC得分最高为72分。

1.5 图像后处理及数据测量

       上述两名医师在不知道分组结果的情况下,分别以双盲的方式读取图像,于GE主机MAGiC软件包重建T1 mapping、T2 mapping和PD定量图以及相应MAGiC T1WI及(short time inversion recovery, STIR)图像。并在MAGiC定量图像上手动勾画感兴趣区域(region of interest, ROI)。每名医师在每幅图像上勾画出三个ROI进行测量,并计算其平均值,将两名医师的平均值作为最终的测量结果。在勾画ROI时,应该避开血管,皮质骨,囊变及骨质硬化区。活动组ROI大小根据病变范围进行调整,尽可能在水肿面积最大的层面选择ROI。如果同一患者出现多个病灶,则测量所有病灶,取平均值。非活动组和健康对照组,分别测量两侧骶髂关节的骶侧和髂侧软骨下骨髓T1、T2和PD值。每侧分为上、下两区,骶髂关节两侧共8个区。取平均值作为最终结果。

1.6 统计学分析

       所有数据采用SPSS 22.0软件进行统计分析。采用组内相关系数(intra-class correlation coefficient, ICC)评价2名医师测量值的一致性,ICC值大于0.80认为测量结果一致性较好。计量资料采用Kolmogorov-Smirnov进行正态性检验,符合正态分布的用均值±标准差(x¯±s)表示,不符合正态分布的用中位数(四分位数间距)表示。采用单因素方差分析比较活动组、非活动组和健康组的T1、T2和PD值。采用受试者工作特征(receiver operating characteristic, ROC)曲线分析T1、T2和PD值对AS骶髂关节活动性的诊断效果。使用Spearman相关分析检验活动组T1、T2、PD值与BASDAI和SPARCC评分的相关性。P<0.05为差异有统计学意义。

2 结果

2.1 入组受试者的一般资料比较和MRI特征

       共纳入78例AS患者,男40例,女38例,年龄14~45岁(24.80±7.30)岁,病程6个月~6年。其中:活动组40例,非活动组38例。健康志愿者35例,男17例,女18例,年龄18~44(26.80±7.10)岁。三组间年龄、性别差异无统计学意义(P>0.05)(表1)。

       活动组患者均在骶髂关节MRI上出现不同程度、不同大小的软骨下骨髓水肿,部分病变表现为双侧骶髂关节软骨下骨髓水肿。非活动组病变多表现为骶髂关节软骨下骨质破坏,部分病变表现为骶髂关节骨质硬化或脂肪沉积。(图1, 2, 3

图1  男,32岁,AS患者活动期。1A:轴位FS-T2WI序列示右侧骶髂关节软骨面下骨髓呈高信号;1B:T1WI轴位示右侧骶髂关节软骨面下低信号;1C:斜冠状位FS-T2WI序列示右侧骶髂关节软骨面下骨髓呈高信号;1D:T1WI斜冠状位示右侧骶髂关节软骨面下骨髓低信号。
图2  男,28岁,AS患者非活动期。2A:轴位FS-T2WI序列示双侧骶髂关节软骨面下骨髓低信号,局部见虫噬样骨侵蚀;2B:T1WI轴位示双侧骶髂关节面下骨髓低信号,关节面毛糙;2C:冠状位FS-T2WI示双侧骶髂关节面毛糙呈低信号;2D:T1WI冠状位示双侧骶髂关节面下低信号。
图3  男,35岁,AS患者活动期与非活动期并存。3A:双侧骶髂关节分区及ROI勾画示意图;3B:T1WI斜冠状位示双侧
Fig. 1  A 32-year-old male with ankylosing spondylitis is active. 1A: T2WI axial fat suppression sequences shows the sub facial bone marrow of the right sacroiliac articular cartilage shows high signal; 1B: T1WI axial position shows low signal below the surface of the right sacroiliac articular cartilage; 1C: Oblique coronal FS-T2WI sequence shows a high signal in the subfacial bone marrow of the right sacroiliac joint cartilage; 1D: The oblique coronal position of T1WI shows low bone marrow signal below the surface of the cartilage of the right sacroiliac joint.
Fig. 2  A 28-year-old male with ankylosing spondylitis is inactive. 2A: Axial FS-T2WI images shows low bone marrow signal in bilateral sacroiliac articular cartilage, local bone erosion is observed, 2B: The T1WI axial position shows low bone marrow signal below the surface of both sacroiliac joints, the joint surface is rough; 2C: Coronal FS-T2WI shows low facial roughness of both sacroiliac joints; 2D: The coronal position of T1WI shows low signal below the surface of both sacroiliac joints.
Fig. 3  A 35-year-old man with ankylosing spondylitis with both active and inactive phases. 3A: Bilateral sacroiliac joint zoning and ROI sketch; 3B: The oblique coronal position of T1WI shows significantly high signal of subchondral bone marrow fat deposition in both sacroiliac joints; 3C: The oblique coronal position of FS-T2WI shows low signal in the subchondral bone marrow of both sacroiliac joints, patchy high signal area on the iliac surface of the left sacroiliac joint (arrow), cue activity; 3D: Pseudo-color T1 mapping shows that the T1 value of subchondral bone marrow in bilateral sacroiliac joint is about 730 ms; 3E: Pseudo-color T2 mapping shows that the T2 value of subfacial bone marrow in bilateral sacroiliac joint cartilage is about 93 ms. The T2 value of the iliac surface of the left sacroiliac joint is about 112 ms; 3F: Pseudocolor PD mapping shows bone marrow fat deposition under the cartilage surface of the sacroiliac joint on both sides and bone marrow edema on the iliac surface of the left sacroiliac joint. AS: ankylosing spondylitis; FS: fat-saturated; ROI: region of interest; PD: proton density.
表1  健康对照组、AS活动组和非活动组基本资料比较
Tab. 1  Comparison of clinical characteristics between active and inactive groups and control group

2.2 观察者间测量值可重复性分析

       活动组、非活动组和健康对照组间T1、T2和PD值的观察者间一致性较好(表2)。

表2  观察者间测量AS活动组、非活动组和健康对照组间T1、T2及PD值一致性检验
Tab. 2  ICC values of T1, T2, and PD between active and inactive groups and control groups measurements by observers

2.3 组间MAGiC定量参数比较

       AS活动组骶髂关节软骨下骨髓T1值低于非活动组和健康对照组;AS活动组骶髂关节软骨下骨髓T2值高于非活动期组和健康对照组;AS活动组骶髂关节软骨下骨髓PD值高于非活动组和健康对照组,差异均有统计学意义(P<0.001),详见表3图4

图4  强直性脊柱炎患者活动组、非活动组和健康对照组间MRI集成序列定量参数T1、T2、质子密度(PD)值比较的箱形图。
图5  MRI集成序列定量参数评估强直性脊柱炎活动期的受试者工作特征曲线。PD:质子密度;AUC:曲线下面积。
Fig. 4  Boxplots for comparison of the average T1、T2 value and proton density (PD) value among the three groups.
Fig. 5  Receiver operating characteristic curves of the T1、T2 and PD values for differentiating between the active and inactive groups. PD: proton density; AUC: area under the curve.
表3  AS活动组、非活动组及健康对照组间MAGiC定量参数比较
Tab. 3  Comparisons of different MAGiC parameters in active and inactive groups and control groups

2.4 MAGiC定量参数诊断效能

       ROC曲线分析结果表明(图5),MAGiC定量参数T1、T2、PD值诊断AS患者骶髂关节病变活动性的曲线下面积(area under the curve, AUC)分别为0.965(95% CI:0.949~0.991)、0.981(95% CI:0.970~0.998)、0.840(95% CI:0.842~0.923);敏感度分别为0.888(95% CI:0.819~0.937)、0.952(95% CI:0.898~0.928)、0.704(95% CI:0.616~0.782);特异度分别为0.985(95% CI:0.946~0.998)、0.969(95% CI:0.924~0.992)、0.932(95% CI:0.959~0.998)。

2.5 MAGiC定量参数与BASDAI和SPARCC评分的相关性

       活动组AS骶髂关节软骨下骨髓的T1、T2、PD值与BASDAI评分呈高度相关(r=-0.771、0.914、0.846,P均<0.001);与SPARCC评分呈高度相关(r=-0.924、0.915、0.938,P均<0.001)(图6)。

图6  强直性脊柱炎患者活动期骶髂关节软骨下骨髓T1、T2、PD值与BASDAI评分和SPARCC评分的相关性。PD:质子密度;BASDAI:Bath强直性脊柱炎疾病活动指数;SPARCC:加拿大脊柱关节炎研究联盟。
Fig. 6  Correlation of T1 values, T2 values and PD values of the AS patients with the BASDAI scores and SPARCC scores. BASDAI: Bath Ankylosing Spondylitis Disease Activity Index; SPARCC: Spondyloarthritis Research Consortium of Canada.

3 讨论

       本研究主要采用MAGiC定量参数对AS患者骶髂关节病变进行定量分析,结果显示MAGiC定量参数T1、T2和PD值能鉴别骶髂关节炎的活动性与非活动性,验证了使用MAGiC定量参数评估AS患者活动性和非活动性骶髂关节炎的可行性,且MAGiC定量参数与临床评分评估疾病活动性之间存在显著相关。本研究评估了MAGiC序列作为一种新的定量成像方法检测和定量评估骶髂关节病变的潜力。在国内首次利用MAGiC序列定量评估AS骶髂关节炎活动性,进而为临床及早有效治疗提供影像学依据。

3.1 AS患者活动组、非活动组与健康对照组间MAGiC定量参数比较

       AS引起的骶髂关节炎病理改变较为复杂,当患者处于活动期时,炎症细胞的浸润和骨髓血管翳的侵入导致炎症因子被激活,血清和血液从毛细血管向骨髓腔的灌注量增加,相应微血管结构遭到破坏,毛细血管通透性增加导致骨髓水肿[16, 17, 18]。有研究证明[19, 20]骨髓水肿是骨质破坏的标志,并且能反映炎症的活动性。然而常规MRI序列只能从宏观水含量的角度诊断骨髓水肿[21],对于骶髂关节炎症活动期的微观变化无法量化,存在局限性。本研究MAGiC序列以先定量后成像的优势,通过监测骶髂关节软骨下骨髓T1、T2和PD值的变化间接评估AS骶髂关节病变的微观改变。

       本研究结果显示,AS活动组骶髂关节软骨下骨髓的T1值低于非活动组和健康对照组。MAGiC序列中T1 mapping反映组织中水和细胞外基质分子间慢频率的相互作用,T1 mapping中的T1值是组织大分子浓度、结合水及组织含水量的生物标志物,不受胶原排列方向的影响,既往用于对心肌组织水肿和纤维化程度进行定量[22]。本研究结果证明T1值能对骶髂关节软骨下骨髓水肿程度进行定量,通过检测组织中水分子的微小变化,定量评估AS骶髂关节软骨下骨髓水肿程度,可反映骨髓内在的特性和水含量的变化[23, 24]。T1值在骨髓水肿的诊断效能中具有很好的敏感性和特异性,与俞顺[25]等的研究相近。另外,本结果发现AS活动组骶髂关节软骨下骨髓的T2值和PD值均高于非活动组和健康对照组,即活动组软骨下骨髓水分子的含量和运动量均高于非活动组。AS骶髂关节炎活动期是由于病变组织血管过多、灌注过多及水外渗作用等导致骨组织水分过多而出现的异常MRI信号,MAGiC序列中T2 mapping可以检测水分子、胶原含量和组织各向异性的变化,T2值能定量反映组织中含水量的变化,是评价早期关节软骨变性的敏感参数。而PD mapping可以反映组织中的游离水含量[26]。AS活动组骶髂关节软骨下骨髓T2值和PD值升高一方面可能是骨髓[27]中单核细胞和淋巴细胞炎性渗出增多所致,另一方面可能与骶髂关节炎存在的标志性特征信号强度有关,信号越强,越有可能反映活跃的炎症[28]。有研究[29]证实AS是始于软骨-骨交界面(软骨下骨髓)的炎症,这些病变被认为与软骨—骨交界处潜在的病理生理过程有关。本研究结果也表明,AS骶髂关节相应部位的软骨可能存在损伤。从本研究结果看,AS非活动组骶髂关节软骨下骨髓T2、PD值高于健康对照组,这是因为在AS的非活动期,急性炎症消退后,骨髓水肿减少,骨髓脂肪含量开始增加。两种行为的综合作用最终表现为非活动组T2值和PD值高于健康对照组。骶髂关节炎症消退后骨髓脂肪含量的增加反映了AS[30, 31]发展的关键阶段。我们的结果从影像学的角度也反映了这种病理改变,因此MAGiC定量参数是临床评估AS严重程度的重要定量指标。

3.2 MAGiC定量参数对AS患者骶髂关节活动性的诊断效能评估

       本研究采用ROC曲线评估MAGiC定量参数T1、T2、PD值在区分AS骶髂关节活动组与非活动组方面的诊断效能。结果显示,T1、T2、PD值在鉴别AS骶髂关节炎活动性的诊断效能均较高,其中T2值的诊断效能最高,这可能是因为MAGiC序列中T2 mapping受周围组织环境的影响较小,其T2值能客观反映骨髓水肿区的水含量和运动情况。T1 mapping的T1值较为独立,不依赖于参考组织的信号强度,也不受胶原排列方向的影响,直观反映骶髂关节软骨下骨髓内的结合水以及组织的含水量,因此也表现出了较高的诊断效能。而PD值诊断效能相对较低,究其原因可能是PD mapping中的PD值反映的是组织中的游离水含量,容易受外界环境以及骶髂关节炎骨髓水肿程度和炎症因子浸润程度的影响,因此其敏感性略低。

3.3 AS患者活动组MAGiC定量参数与BASDAI和SPARCC评分的相关性分析

       SPARCC评分系统是一种用于评估骶髂关节炎活动的MRI评分系统。BRADBURY等[32]和MORBÉE等[33]表明SPARCC评分系统在评估AS患者的疾病活动性或治疗反应时可以提供重要信息。BASDAI是GARRETT等[34]提出的一种评估AS患者病情的量表,该指标具有较高的可靠性和敏感度,能全面反映AS患者的病情。本研究显示T2值和PD值与AS的影像评分(SPARCC评分)和临床评分(BASDAI)均有较强的正相关,这与以往的研究结果相近[35, 36]。因此,MAGiC序列定量参数可以作为评价AS骶髂关节病变活动性的影像学指标;影像定量指标与临床密切相关,这有助于监测AS患者的临床反应。

3.4 本研究的局限性

       本研究有以下局限性。首先,由于大多数AS病例的临床诊断没有活检支持,缺乏作为对照的组织病理学结果;其次,MAGiC序列在骶髂关节软骨下骨侵蚀和软骨破坏的应用有限,在未来的研究中,我们将对MAGiC序列进行优化,进一步扩大样本量。

4 结论

       综上所述,MAGiC序列定量参数可定量评估AS的活动性,能提供有效量化指标,尤其是T2值可以作为骶髂关节炎活动性的生物学标志物,为临床诊断提供影像学依据。

[1]
WU J L, YAN L F, CHAI K X. Systemic immune-inflammation index is associated with disease activity in patients with ankylosing spondylitis[J/OL]. J Clin Lab Anal, 2021, 35(9): e23964 [2023-08-07]. https://pubmed.ncbi.nlm.nih.gov/34418163/. DOI: 10.1002/jcla.23964.
[2]
WANG D D, YIN H J, LIU W L, et al. Comparative analysis of the diagnostic values of T2 mapping and diffusion-weighted imaging for sacroiliitis in ankylosing spondylitis[J]. Skeletal Radiol, 2020, 49(10): 1597-1606. DOI: 10.1007/s00256-020-03442-8.
[3]
DE JONGH J, VERWEIJ N J F, YAQUB M, et al. 18F]Fluoride PET provides distinct information on disease activity in ankylosing spondylitis as compared to MRI and conventional radiography[J]. Eur J Nucl Med Mol Imaging, 2023, 50(5): 1351-1359. DOI: 10.1007/s00259-022-06080-5.
[4]
BARALIAKOS X, KUEHN A, TSIAMI S, et al. The influence of age on the prevalence of inflammatory and structural MRI lesions in the sacroiliac joints of patients with and without axial spondyloarthritis[J]. Rheumatology, 2023, 62(4): 1519-1525. DOI: 10.1093/rheumatology/keac505.
[5]
SOULARD J, VAILLANT J, BAILLET A, et al. Translation and French linguistic validation of the bath ankylosing spondylitis functional index and the bath ankylosing spondylitis global score in patients with axial spondyloarthritis[J]. Curr Rheumatol Rev, 2023, 19(4): 449-454. DOI: 10.2174/1573397118666220829124234.
[6]
ZHANG M C, ZHOU L, HUANG N, et al. Assessment of active and inactive sacroiliitis in patients with ankylosing spondylitis using quantitative dynamic contrast-enhanced MRI[J]. J Magn Reson Imaging, 2017, 46(1): 71-78. DOI: 10.1002/jmri.25559.
[7]
PLIER M, TOUKAP A N, MICHOUX N, et al. Diagnostic performance of sacroiliac joint MRI and added value of spine MRI to detect active spondyloarthritis[J]. Diagn Interv Imaging, 2021, 102(3): 171-180. DOI: 10.1016/j.diii.2020.07.001.
[8]
GUO C, ZHENG K, XIE Z, et al. Intravoxel incoherent motion diffusion-weighted imaging as a quantitative tool for evaluating disease activity in patients with axial spondyloarthritis[J/OL]. Clin Radiol, 2022, 77(6): e434-e441 [2023-08-07]. https://pubmed.ncbi.nlm.nih.gov/35232574/. DOI: 10.1016/j.crad.2022.02.004.
[9]
占颖莺, 张珂, 郑晶, 等. MR集合序列定量参数评价中轴型脊柱关节炎骶髂关节病变[J]. 中国医学影像技术, 2021, 37(8): 1214-1218. DOI: 10.13929/j.issn.1003-3289.2021.08.024.
ZHAN Y Y, ZHANG K, ZHENG J, et al. Quantitative parameters of MR compilation sequence for evaluation on axial spondyloarthritis sacroiliac joint disease[J]. Chin J Med Imag Technol, 2021, 37(8): 1214-1218. DOI: 10.13929/j.issn.1003-3289.2021.08.024.
[10]
QIN J, LI J, YANG H, et al. Values of intravoxel incoherent motion diffusion weighted imaging and dynamic contrast-enhanced MRI in evaluating the activity of sacroiliitis in ankylosing spondylitis of rat model[J]. Magn Reson Imaging, 2020, 68: 30-35. DOI: 10.1016/j.mri.2020.01.007.
[11]
田兆荣, 龚瑞, 孙杰, 等. MR集成序列定量图谱技术在特发性炎性肌病中的应用[J]. 中国医学影像学杂志, 2021, 29(11): 1149-1153. DOI: 10.3969/j.issn.1005-5185.2021.11.021.
TIAN Z R, GONG R, SUN J, et al. Magnetic resonance image complication in the assessment of idiopathic inflammatory myopathies[J]. Chin J Med Imag, 2021, 29(11): 1149-1153. DOI: 10.3969/j.issn.1005-5185.2021.11.021.
[12]
LOU B H, JIANG Y W, LI C M, et al. Quantitative analysis of synthetic magnetic resonance imaging in Alzheimer's disease[J/OL]. Front Aging Neurosci, 2021, 13: 638731 [2023-08-07]. https://pubmed.ncbi.nlm.nih.gov/33912023/. DOI: 10.3389/fnagi.2021.638731.
[13]
ARITA Y, TAKAHARA T, YOSHIDA S, et al. Quantitative assessment of bone metastasis in prostate cancer using synthetic magnetic resonance imaging[J]. Invest Radiol, 2019, 54(10): 638-644. DOI: 10.1097/RLI.0000000000000579.
[14]
MACHADO P, LANDEWÉ R, LIE E, et al. Ankylosing Spondylitis Disease Activity Score (ASDAS): defining cut-off values for disease activity states and improvement scores[J]. Ann Rheum Dis, 2011, 70(1): 47-53. DOI: 10.1136/ard.2010.138594.
[15]
TENÓRIO A P M, FALEIROS M C, JUNIOR J R F, et al. A study of MRI-based radiomics biomarkers for sacroiliitis and spondyloarthritis[J]. Int J Comput Assist Radiol Surg, 2020, 15(10): 1737-1748. DOI: 10.1007/s11548-020-02219-7.
[16]
ALBANO D, BIGNONE R, CHIANCA V, et al. T2 mapping of the sacroiliac joints in patients with axial spondyloarthritis[J/OL]. Eur J Radiol, 2020, 131: 109246 [2023-08-07]. https://pubmed.ncbi.nlm.nih.gov/32911127/. DOI: 10.1016/j.ejrad.2020.109246.
[17]
郝芳, 俞咏梅, 陈鹏飞, 等. DCE-MRI参数在强直性脊柱炎骶髂关节病变活动性评估中的价值[J]. 中国临床医学影像杂志, 2023, 34(5): 368-372. DOI: 10.12117/jccmi.2023.05.015.
HAO F, YU Y M, CHEN P F, et al. The value of DCE-MRI parameters in the evaluation of inflammatory activity of sacroiliac joint in ankylosing spondylitis[J]. J China Clin Med Imag, 2023, 34(5): 368-372. DOI: 10.12117/jccmi.2023.05.015.
[18]
BRESSEM K K, ADAMS L C, PROFT F, et al. Deep learning detects changes indicative of axial spondyloarthritis at MRI of sacroiliac joints[J]. Radiology, 2022, 305(3): 655-665. DOI: 10.1148/radiol.212526.
[19]
DEPPE D, HERMANN K G, PROFT F, et al. CT-like images of the sacroiliac joint generated from MRI using susceptibility-weighted imaging (SWI) in patients with axial spondyloarthritis[J/OL]. RMD Open, 2021, 7(2): e001656 [2023-08-07]. https://pubmed.ncbi.nlm.nih.gov/34049998/. DOI: 10.1136/rmdopen-2021-001656.
[20]
MARNAS G, BERNARDY C, COLE A, et al. Spine abnormalities associated with bone edema on sacroiliac joints MRI in patients with non-inflammatory chronic back pain[J/OL]. Joint Bone Spine, 2022, 89(6): 105436 [2023-08-07]. https://pubmed.ncbi.nlm.nih.gov/35777553/. DOI: 10.1016/j.jbspin.2022.105436.
[21]
黄志坚, 米存东, 杜昱, 等. 骶髂关节磁共振炎症评分及骶髂关节结构损伤评分在活动期中轴型脊柱关节炎病情评估中的价值[J]. 中华风湿病学杂志, 2019, 23(9): 612-616. DOI: 10.3760/cma.j.issn.1007-7480.2019.09.007.
HUANG Z J, MI C D, DU Y, et al. The value of the spondyloarthritis research consortium of ceanada magnetic resonance imaging sacroiliac joint inflammation score and structural score in evaluating the activity of axial spondyloarthritis[J]. Chin J Rheumatol, 2019, 23(9): 612-616. DOI: 10.3760/cma.j.issn.1007-7480.2019.09.007.
[22]
YONEYAMA K, KITANAKA Y, TANAKA O, et al. Cardiovascular magnetic resonance imaging in heart failure[J]. Expert Rev Cardiovasc Ther, 2018, 16(4): 237-248. DOI: 10.1080/14779072.2018.1445525.
[23]
SHIGUETOMI-MEDINA J M, RAMIREZ-GL J L, STØDKILDE-JØRGENSEN H, et al. Systematized water content calculation in cartilage using T1-mapping MR estimations: design and validation of a mathematical model[J]. J Orthop Traumatol, 2017, 18(3): 217-220. DOI: 10.1007/s10195-016-0433-8.
[24]
MITTAL S, PRADHAN G, SINGH S, et al. T1 and T2 mapping of articular cartilage and menisci in early osteoarthritis of the knee using 3-Tesla magnetic resonance imaging[J]. Pol J Radiol, 2019, 84: e549-e564 [2023-08-07]. https://pubmed.ncbi.nlm.nih.gov/32082454/. DOI: 10.5114/pjr.2019.91375.
[25]
俞顺, 苏家威, 林敏贵, 等. T1-mapping技术对肿瘤坏死因子-α拮抗剂治疗中轴型脊柱关节病疗效监测的初步研究[J]. 磁共振成像, 2022, 13(1): 21-25, 36. DOI: 10.12015/issn.1674-8034.2022.01.005.
YU S, SU J W, LIN M G, et al. A preliminary study on the efficacy of tumor necrosis factor alpha antagonists in the treatment of axial spondyloarthropathy by T1-mapping technique[J]. Chin J Magn Reson Imag, 2022, 13(1): 21-25, 36. DOI: 10.12015/issn.1674-8034.2022.01.005.
[26]
LEE C N, CHOI Y J, JEON K J, et al. Synthetic magnetic resonance imaging for quantitative parameter evaluation of temporomandibular joint disorders[J/OL]. Dentomaxillofac Radiol, 2021, 50(5): 20200584 [2023-08-07]. https://pubmed.ncbi.nlm.nih.gov/33544630/. DOI: 10.1259/dmfr.20200584.
[27]
BRUNO F, ARRIGONI F, PALUMBO P, et al. New advances in MRI diagnosis of degenerative osteoarthropathy of the peripheral joints[J]. Radiol Med, 2019, 124(11): 1121-1127. DOI: 10.1007/s11547-019-01003-1.
[28]
GONG J S, PEDOIA V, FACCHETTI L, et al. Bone marrow edema-like lesions (BMELs) are associated with higher T1ρ and T2 values of cartilage in anterior cruciate ligament (ACL)-reconstructed knees: a longitudinal study[J]. Quant Imaging Med Surg, 2016, 6(6): 661-670. DOI: 10.21037/qims.2016.12.11.
[29]
AIYER S, UDAR S, KHARAT A, et al. Utility of selected sequence MRI imaging of the axial skeleton in the diagnosis of axial spondyloarthritis[J/OL]. J Clin Orthop Trauma, 2022, 32: 101983 [2023-08-07]. https://pubmed.ncbi.nlm.nih.gov/36035783/. DOI: 10.1016/j.jcot.2022.101983.
[30]
TENÓRIO A P M, FALEIROS M C, JUNIOR J R F, et al. A study of MRI-based radiomics biomarkers for sacroiliitis and spondyloarthritis[J]. Int J Comput Assist Radiol Surg, 2020, 15(10): 1737-1748. DOI: 10.1007/s11548-020-02219-7.
[31]
ZHANG K, LIU C R, ZHU Y F, et al. Synthetic MRI in the detection and quantitative evaluation of sacroiliac joint lesions in axial spondyloarthritis[J/OL]. Front Immunol, 2022, 13: 1000314 [2023-08-07]. https://pubmed.ncbi.nlm.nih.gov/36225919/. DOI: 10.3389/fimmu.2022.1000314.
[32]
BRADBURY L A, HOLLIS K A, GAUTIER B, et al. Diffusion-weighted imaging is a sensitive and specific magnetic resonance sequence in the diagnosis of ankylosing spondylitis[J]. J Rheumatol, 2018, 45(6): 771-778. DOI: 10.3899/jrheum.170312.
[33]
MORBÉE L, VEREECKE E, LALOO F, et al. Common incidental findings on sacroiliac joint MRI: added value of MRI-based synthetic CT[J]. Eur J Radiol, 2023, 158: 110651 [2023-08-07]. https://pubmed.ncbi.nlm.nih.gov/36535080/. DOI: 10.1016/j.ejrad.2022.110651.
[34]
GARRETT S, JENKINSON T, KENNEDY L G, et al. A new approach to defining disease status in ankylosing spondylitis: the Bath Ankylosing Spondylitis Disease Activity Index[J]. J Rheumatol, 1994, 21(12): 2286-2291.
[35]
WANG F X, CHU C, ZHU L, et al. Whole-lesion ADC histogram analysis and the spondyloarthritis research consortium of Canada (SPARCC) MRI index in evaluating the disease activity of ankylosing spondylitis[J]. J Magn Reson Imaging, 2019, 50(1): 114-126. DOI: 10.1002/jmri.26568.
[36]
KARINO K, KONO M, KONO M, et al. Myofascia-dominant involvement on whole-body MRI as a risk factor for rapidly progressive interstitial lung disease in dermatomyositis[J]. Rheumatology, 2020, 59(7): 1734-1742. DOI: 10.1093/rheumatology/kez642.

上一篇 DCE-MRI联合IVIM定量参数在布氏杆菌性脊柱炎治疗评价中的应用
下一篇 谷氨酸化学交换饱和转移成像对放射性脑损伤大鼠的应用价值
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2