分享:
分享到微信朋友圈
X
综述
磁共振成像VI-RADS评分在膀胱癌中的应用及进展
王承炎 刘华琼 高文鑫 姜兴岳 许昌

WANG C Y, LIU H Q, GAO W X, et al. Application and progression of magnetic resonance imaging VI-RADS score in bladder cancer[J]. Chin J Magn Reson Imaging, 2023, 14(8): 176-181.引用本文:王承炎, 刘华琼, 高文鑫, 等. 磁共振成像VI-RADS评分在膀胱癌中的应用及进展[J]. 磁共振成像, 2023, 14(8): 176-181. DOI:10.12015/issn.1674-8034.2023.08.031.


[摘要] 膀胱癌是泌尿系统发病率最高的恶性肿瘤,因对其进行准确的分类及分期较为困难,使膀胱癌患者的诊治面临着诸多问题。随着现代医疗技术的不断发展和完善,2018年,基于多参数磁共振成像(multi-parametric magnetic resonance imaging, mpMRI)技术所提出的膀胱影像报告和数据系统(Vesical Imaging-Reporting and Data System, VI-RADS)得到了日本腹部放射学会、欧洲泌尿外科协会及欧洲泌尿外科影像学会的共同认可。VI-RADS评分可对膀胱癌进行较为准确的分类,为临床医生对膀胱癌患者的治疗提供指导。本文就VI-RADS在膀胱癌中的诊断效能、VI-RADS参数及诊断膀胱癌时最佳临界值的选择、VI-RADS与影像组学的联合等研究现状及进展进行综述,并对肿瘤大小和肿瘤所在部位对VI-RADS的影响等未来研究方向进行展望,旨在为该领域研究提供参考。
[Abstract] Bladder cancer is the most common urinary malignant tumor, because it is difficult to accurately classify and stage it, which makes the diagnosis and treatment of bladder cancer patients face many problems. With the continuous development and improvement of modern medical technology. In 2018, the Vesical Imaging-Reporting and Data System (VI-RADS) based on multi-parametric magnetic resonance imaging (mpMRI) technology has been recognized by the Japanese Society of Abdominal Radiology, European Association of Urological and European Society of Urology Imaging. The VI-RADS score can classify bladder cancer more accurately and provide guidance for clinicians in the treatment of patients with bladder cancer. This article reviews the research status and progress of VI-RADS in bladder cancer, VI-RADS parameters and the selection of the optimal cut-off value for the diagnosis of bladder cancer, and the combination of VI-RADS and radiomics, and looks forward to future research directions such as tumor size and tumor location on VI-RADS, aiming to provide reference for research in this field.
[关键词] 膀胱癌;肌层浸润;膀胱影像报告和数据系统;磁共振成像;多参数磁共振成像;临床分期
[Keywords] bladder cancer;myometrial invasion;Vesical Imaging-Reporting and Data System;magnetic resonance imaging;multi-parametric magnetic resonance imaging;clinical staging

王承炎    刘华琼    高文鑫    姜兴岳    许昌 *  

滨州医学院附属医院放射科,滨州 256603

通信作者:许昌,E-mail:xuchang3183@126.com

作者贡献声明:许昌设计本研究的方案,对稿件重要的问题进行了修改;王承炎起草和撰写稿件,获取、分析或解释本研究的数据;姜兴岳、高文鑫、刘华琼获取、分析或解释本研究的数据,对稿件重要的内容进行了修改;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


收稿日期:2022-12-09
接受日期:2023-05-06
中图分类号:R445.2  R737.14 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2023.08.031
引用本文:王承炎, 刘华琼, 高文鑫, 等. 磁共振成像VI-RADS评分在膀胱癌中的应用及进展[J]. 磁共振成像, 2023, 14(8): 176-181. DOI:10.12015/issn.1674-8034.2023.08.031.

0 前言

       膀胱癌是全球男性中第六大常见的癌症[1],通常在患者出现血尿或其他泌尿系统症状后,经软式膀胱镜被发现[2]。膀胱癌可分为肌层浸润性膀胱癌(muscle-invasive bladder cancer, MIBC)和非肌层浸润性膀胱癌(non-muscle invasive bladder cancer, NMIBC),其中MIBC的发生率约为四分之一[3],临床上对MIBC常将保留或切除膀胱作为首要考虑,采用根治性膀胱切除术和新辅助化疗进行治疗。而对NMIBC,因其进展率为20%~30%,但复发率高达60%~70%,所以通常将预防进展和防止复发作为首要考虑[4],采用经尿道膀胱肿瘤切除术(transurethral resection of bladder tumor, TURBT)或膀胱内化疗等方法进行治疗[5, 6]。综上,不同类型的膀胱癌对应的治疗和预后方案也不同,因此,膀胱癌的准确分类对患者的治疗及预后有着决定性意义。

       欧洲泌尿外科协会指南中指出TURBT是膀胱癌分期的金标准,临床上也将TURBT作为膀胱癌诊断及病理分期的常用方法,但其也存在诸多的风险,TURBT切除的肿瘤质量取决于外科医生的专业知识及操作水平[7, 8],因此得出的肿瘤发生率会受医生经验差异的影响[9],导致肿瘤分期不足的情况常常发生,约25%的MIBC存在着分期不足的可能[10]。基于首次进行TURBT有如上的局限性,美国泌尿外科协会和欧洲泌尿外科协会指南建议患者进行重复的TURBT[11, 12],虽多次切除和活检确实可以极大地减少诊断错误,但因TURBT的侵入性、高成本及可能错过最佳治疗时间等原因,现在迫切需要一种无创且准确的方法来协助膀胱癌的诊断及分类[13]

       MRI作为一种无创性的检查方式,其具有较高的软组织分辨率和对比度[14, 15]。在WOO等[16]和GANDHI等[17]分别做的两项系统评价和Meta分析中,MRI在膀胱癌分类中有着87%、92%和79%、87%的敏感度和特异度。在其他研究中MRI也已被证实是膀胱癌局部分期的最佳成像方式[18]。随着MRI技术的不断发展,多种MRI序列相结合的多参数MRI(multi-parametric MRI, mpMRI)在膀胱癌的诊断中发挥了重要的作用,以mpMRI为基础提出的VI-RADS评分系统将肿瘤组织在多种MRI序列上进行评分,综合不同序列得分计算出VI-RADS的分值,根据所得分值可以更直观地对膀胱癌进行诊断。本文主要对VI-RADS在膀胱癌中的研究现状、进展及未来发展方向进行综述,为该领域研究提供参考。

1 mpMRI及VI-RADS

       mpMRI是包括T2WI、磁共振对比增强(dynamic contrast enhanced, DCE)T1WI和扩散加权成像(diffusion weighted imaging, DWI)的一种MRI检查方式[19]。膀胱壁组织在病理学上分为3层结构,T2WI和DWI可以评估固有肌层(逼尿肌)的情况,DCE-T1WI可以提供有关内层(尿路上皮和固有层)的准确信息[20]。在T2WI逼尿肌显示为线状低信号;在DWI逼尿肌显示为线状中等信号;在DCE-T1WI上,内层表现为在其强化的线状高信号,固有肌层表现为缓慢、进行性强化的线状低信号[9]

       2018年,由PANEBIANCO等[9]基于mpMRI提出的用来评估膀胱癌肌层浸润情况的VI-RADS评分系统得到了日本腹部放射学会、欧洲泌尿外科协会及欧洲泌尿外科影像学会的共同认可。VI-RADS评分是由T2WI、DWI(b值1000 s/mm2)及DCE-T1WI(对比剂:钆喷酸葡胺,剂量0.2 mmol/kg,注射流速2 mL/s)三种成像序列分别评分后合成的最终分数,具体的评分方法见表1表2[21, 22]

       WANG等[23]的研究比较了VI-RADS中每一个序列的诊断效能,T2WI的敏感度为77.0%,DCE-T1WI和DWI的敏感性均为81.4%。3个序列的受试者工作特征(receiver operating characteristic, ROC)曲线下面积(area under the curve, AUC)分别为0.941、0.959和0.961。通过敏感度和AUC比较可以看出T2WI的诊断效能最差,DWI的诊断效能最好。HUANG等[24]的研究得出了相似的结论。在这3个序列中,T2WI和DCE-T1WI对于膀胱癌的诊断和分期的准确性不如DWI,且过度分期的发生率往往更高。因此当VI-RADS评分中三个序列得分不同,最终诊断不一致时,常常将DWI作为优先考虑的序列[25],特别是当T2WI与DCE-T1WI的得分之间存在偏差时,DWI的得分往往更具有代表性[23,26, 27]

表1  膀胱影像报告和数据系统评分细则
Tab. 1  Scoring rules for Vesical Imaging-Reporting and Data System
表2  膀胱影像报告和数据系统的评分原则及临床含义
Tab. 2  Scoring principles and clinical implications of Vesical Imaging-Reporting and Data System

2 VI-RADS在膀胱癌中应用的诊断效能

       VI-RADS是作为诊断膀胱癌的一种新型评分系统,自该评分提出以来,多位学者就VI-RADS对于膀胱癌的诊断效能进行了评估。

       在近几年针对VI-RADS评分诊断效能的11项研究中共统计了1235例膀胱癌患者,其诊断的敏感度范围为83%~100%,特异度范围为74.2%~100%,AUC值范围为0.830~0.994。VI-RADS对于膀胱癌肌层浸润的诊断有较高的敏感度和特异度,且AUC值较大,因此VI-RADS对鉴别MIBC和NMIBC具有较高的效能。具体信息如表3所示。

表3  近几年VI-RADS评分诊断效能的研究
Tab. 3  Research on the diagnostic efficacy of VI-RADS scoring in recent years

3 VI-RADS在膀胱癌诊断中的进展

3.1 VI-RADS在参数选择上的研究

       mpMRI虽然可以令患者避免辐射暴露,但DCE-T1WI序列需要应用对比剂,对比剂会对肾功能不全的患者造成损伤且延长检查总时间,而膀胱癌中约17%的患者存在肾功能不全[37]。因此,省略DCE-T1WI的双参数MRI(biparametric MRI, bpMRI)是否与mpMRI具有相似的诊断效能引起了多位学者探讨。

       DELLI等[36]对VI-RADS评分是否需要DCE-T1WI序列进行了一项研究,研究者选取了38例膀胱癌患者,并且由4名阅片者进行独立的审查,结果显示,使用mpMRI和bpMRI对于膀胱癌诊断的敏感度均为100%,特异度分别为82.76%和83.33%、79.31%和79.31%、89.66%和79.31%、80.00%和74.19%,AUC值分别为0.91和0.92、0.90和0.90、0.95和0.90、0.90和0.87。该研究中两种评估膀胱癌肌层浸润的方法均具有统计学意义(P>0.05),这证明bpMRI和mpMRI在膀胱癌肌层侵袭性的评估中有着相似的诊断效能。WATANABE等[38]使用了更大的样本量进行了相似的研究,与DELLI等得出了相同的结论,同时还发现了去噪深度学习重建可提升bpMRI诊断的精确性。ASLAN等[39]就bpMRI与mpMRI对于判断膀胱癌肌层浸润的效能上进行了目前为止样本量最多的研究。其研究数据由两位读片者进行分析,在第一位读片者的评估中,bpMRI和mpMRI的敏感度分别为90.3%、93.5%,特异度分别为96.6%、99.1%,准确度分别为96.0%、97.3%,AUC值分别为0.947、0.951;第二位读片者评估的bpMRI和mpMRI的敏感度分别为87.1%、90.3%,特异度为91.6%、96.6%,准确度为91.3%、94.6%,AUC值分别为0.919、0.921。该研究同样证明了bpMRI与mpMRI在膀胱癌肌层浸润的诊断效能方面没有显著差异(P值分别为0.238、0.318)。

       目前的大部分研究都认为VI-RADS对膀胱癌进行诊断时,DCE-T1WI不是必要的,但仍有部分研究认为DCE-T1WI序列发挥着一定的作用。

       MENG等[40]将膀胱癌肌层浸润时T2WI与DCE-T1WI得分不同的患者纳入不一致组,其余纳入一致组,共对106例患者进行了回顾性研究。研究最终表明DCE-T1WI序列在一致组中并不是必需的,但在不一致组中是评判膀胱癌肌层浸润的重要指标。在YE等[41]的研究中,bpMRI与mpMRI在评判膀胱癌肌层浸润的敏感度上无显著差异,但当评分为3分或4分时,bpMRI比mpMRI更具特异性,他们认为正是因为经验不足的阅片者难以准确地对DCE-T1WI序列进行评分,因此降低了VI-RADS的特异性。

       综上,多数研究认为不使用DCE-T1WI序列的bpMRI具有与mpMRI相同的诊断效能。但依然有少数的研究认为DCE-T1WI序列具有优势,因此bpMIR是否已经可以取代mpMRI用于VI-RADS评分仍需继续关注。

3.2 VI-RADS最佳临界值的选择

       在VI-RADS评分中,分辨肿瘤肌层浸润和非肌层浸润最佳临界值尚有争议。DEL GIUDICE等[42]和WONG等[19]的研究认为VI-RADS≥3时mpMRI具有良好的敏感度和特异度,可能是预测侵袭性最佳的临界值。WANG等[23]、BARCHETTI等[28]、WANG等[29]和LIU等[30]的研究则认为将VI-RADSD>3分设为分界时对于判断肌层浸润的效果更好,能更可靠地评估MIBC。

       MARCHIONI等[33]和TAGUCHI等[35]的前瞻性研究均认为在1~5的分值中,VI-RADS≥4分在判断肌层浸润的敏感度(85.7%)、特异度(86.9%)和准确度最高。FRAGKOULIS等[32]的研究同样认为应将4分作为临界值。

       LUO等[8]、WOO等[16]和FENG等[43]的Meta分析中报道了VI-RADS不同分值的敏感性和特异性。在他们的报道中,VI-RADS临界值取3或4时的总体诊断效能是十分相似的,但VI-RADS≥3的敏感性均高于VI-RADS≥4,VI-RADS≥4时的特异性均高于VI-RADS≥3。因此,3分可以作为处理肌层浸润概率较高的患者时的临界值,而4分可以用在考虑更积极治疗的患者等需要更高特异性的临床环境中,临床可根据具体情况进行临界值的选择。

       上述多数研究认为3分更适宜作为VI-RADS评判膀胱癌类型的最佳临界值,但仍有部分研究推荐将4分作为临界值,临界值的选择尚未定论。可以将VI-RADS与临床密切结合,通过临床的实践来帮助完善临界值的选择。

3.3 VI-RADS的其他研究进展

       在定性分析中,小视野扩散加权成像(reduced Field of View diffusion weighted imaging, rFOV-DWI)的分辨率明显优于传统DWI。JURI等[25]对rFOV-DWI能否提升VI-RADS鉴别NMIBC和MIBC的能力进行了研究,研究结果表明rFOV-DWI的敏感性、特异性和准确率均高于常规的DWI序列,因此推断在VI-RADS评分中,使用rFOV-DWI替代传统的DWI对于区分NMIBC和MIBC更有优势。MENG等[44]做了类似的研究得出了相似的结果,且他们进一步研究了双平面(轴向和矢状)的rFOV-DWI与单平面(轴向)DWI相比的诊断效能,其结果显示,双平面的rFOV-DW与单平面的DWI相比在预测膀胱癌的肌层浸润方面有着优越性。

       VI-RADS评分系统中1~2分,4~5分的诊断效能较为确定。在WANG等[29]的研究中,VI-RADS 3分的膀胱癌患者有33.3%被确诊为NMIBC,66.7%被确诊为MIBC。VI-RADS评分为3分对膀胱癌的肌层浸润预测效果较差,假阳性率过高且常常会引起过度治疗。AKCAY等[34]、AHN等[45]和WANG等[46]认为将肿瘤的接触长度与VI-RADS评分相结合可以提高对膀胱肿瘤诊断的准确率。AKCAY等[34]和WANG等[46]在VI-RADS评分为3分的病灶中额外加入肿瘤长度的指标进一步进行评估,结果显示这样可以在保持敏感性的同时有效降低诊断的假阳性率。但两个研究的肿瘤长度最佳临界值不同,AKCAY等[34]的研究认为肿瘤长度与VI-RADS结合的最佳临界值为2 cm,而WANG等[46]认为3 cm作为肿瘤长度的阈值更优。从上述研究中可知,肿瘤接触长度与VI-RADS评分相结合确实有助于提高评分3分时VI-RADS的诊断效能,但接触长度的最佳值的选择仍有争议,有待进一步研究。

       在影像组学相关研究中,ZHENG等[47]对185例膀胱癌患者病例进行了回顾性研究,从位于轴向T2WI的最大病变和DCE图像中定量提取了2436个影像组学特征,并采用最小冗余最大相关性算法进行特征筛选。使用训练集中的最小绝对收缩和选择算法(least absolute shrinkage and selection operator, LASSO)、支持向量机(support vector machine, SVM)和随机森林(random forest, RF)3个分类器构建影像组学特征模型,发现与RF和SVM分类器相比,LASSO分类器在训练集(准确率:90.7%,AUC:0.934)和验证集(准确率:87.5%,AUC:0.906)中具有最佳的肌层侵入性状态区分能力。这说明将影像组学特征与VI-RADS评分相结合的列线图可以进一步提高膀胱癌的诊断效能并改善临床决策。

4 VI-RADS的局限性

       VI-RADS这一评分系统目前主要应用于初诊且未经过治疗的膀胱癌患者,因TURBT手术、膀胱内卡介苗和膀胱灌注化疗都可能引起膀胱壁和周围组织的水肿和炎症,在影像学检查上可能难以与膀胱癌区分,因此可能会导致膀胱癌的局部分期过高[9]。由于没有比较可靠的方法来避免膀胱壁的这种变化,因此通常在TURBT之前进行VI-RADS评分。近年来学者对VI-RADS评分在膀胱癌术后的应用进行了研究。EL-KARAMANY等[48]对术后的膀胱癌患者进行了VI-RADS评分,VI-RADS 3分时,敏感度为78.6%,特异度为77.8%,准确率为78.3%。虽然该研究术后VI-RADS评分有较高的敏感度和特异度,但该研究统计的数据量较少。术后行VI-RADS评分的研究相对缺乏,因此能否将VI-RADS评分运用到膀胱癌术后仍有待进一步探究。

       根据KUFUKIHARA等[49]关于VI-RADS评分对不同部位肿瘤浸润情况的研究得出,VI-RADS评分在膀胱颈、三角区、穹顶、后壁和前壁等膀胱的大多数部位的诊断效能均高于膀胱镜检查,但对于输尿管口和侧壁的肿瘤VI-RADS的诊断效能低于膀胱镜检查。UENO等[50]和WANG等[29]的研究也认为发生在输尿管口的肿瘤VI-RADS评分可能会出现过度诊断或诊断不足等情况。邓磊等[51]针对膀胱尿道口区的肿瘤与输尿管之间的关系将病变进行分类,以探究能否提升VI-RADS评分2分和3分时对肌层浸润判断的准确率,其研究结果显示明确输尿管口与肿瘤之间的关系及判断输尿管口是否扩张积液,对优化VI-RADS评分有帮助,但其研究的样本量较小且膀胱癌输尿管口区的影像资料较少。因此膀胱特殊区域的肿瘤仍无法进行准确的评估,对发生在膀胱侧壁或输尿管口等处的肿瘤可进行针对性的研究,寻找对其进行诊断和分类的最佳方法。

5 总结

       VI-RADS评分系统在膀胱癌的浸润情况中已展现出很高的诊断价值,为不同领域的医生了解肿瘤情况、临床后续制订治疗方案及判断预后情况提供了便捷的方法,但其仍有较大的发展潜力,在探究VI-RADS在膀胱癌术后的应用、如何准确判断VI-RADS 3分时肌层浸润的情况、bpMRI用于VI-RADS评分的价值及肿瘤接触长度与VI-RADS结合时的最佳值等问题上,仍需更多的研究数据和经验。相信经过广泛的临床研究和使用后,VI-RADS评分会愈加完善,成为膀胱癌分类中高效、可靠的评分系统。

[1]
LIU Y, ZHENG H J, XU X P, et al. The invasion depth measurement of bladder cancer using T2-weighted magnetic resonance imaging[J/OL]. Biomed Eng Online, 2020, 19(1): 92 [2022-10-14]. https://pubmed.ncbi.nlm.nih.gov/33287834/. DOI: 10.1186/s12938-020-00834-8.
[2]
BABJUK M, BÖHLE A, BURGER M, et al. EAU guidelines on non-muscle-invasive urothelial carcinoma of the bladder: update 2016[J]. Eur Urol, 2017, 71(3): 447-461. DOI: 10.1016/j.eururo.2016.05.041.
[3]
GHANDOUR R, SINGLA N, LOTAN Y. Treatment options and outcomes in nonmetastatic muscle invasive bladder cancer[J]. Trends Cancer, 2019, 5(7): 426-439. DOI: 10.1016/j.trecan.2019.05.011.
[4]
WONG V K, GANESHAN D, JENSEN C T, et al. Imaging and management of bladder cancer[J/OL]. Cancers, 2021, 13(6): 1396 [2022-10-14]. https://pubmed.ncbi.nlm.nih.gov/33808614/. DOI: 10.3390/cancers13061396.
[5]
PATEL V G, OH W K, GALSKY M D. Treatment of muscle-invasive and advanced bladder cancer in 2020[J]. CA A Cancer J Clin, 2020, 70(5): 404-423. DOI: 10.3322/caac.21631.
[6]
WANG Y C, SHEN Y Q, HU X M, et al. Application of R2* and apparent diffusion coefficient in estimating tumor grade and T category of bladder cancer[J]. Am J Roentgenol, 2020, 214(2): 383-389. DOI: 10.2214/ajr.19.21668.
[7]
JAZAYERI S B, DEHGHANBANADAKI H, HOSSEINI M, et al. Diagnostic accuracy of vesical imaging-reporting and data system (VI-RADS) in suspected muscle invasive bladder cancer: a systematic review and diagnostic meta-analysis[J]. Urol Oncol Semin Orig Investig, 2022, 40(2): 45-55. DOI: 10.1016/j.urolonc.2021.11.008.
[8]
LUO C, HUANG B, WU Y K, et al. Use of Vesical Imaging-Reporting and Data System (VI-RADS) for detecting the muscle invasion of bladder cancer: a diagnostic meta-analysis[J].Eur Radiol, 2020, 30(8): 4606-4614. DOI: 10.1007/s00330-020-06802-z.
[9]
PANEBIANCO V, NARUMI Y, ALTUN E, et al. Multiparametric magnetic resonance imaging for bladder cancer: development of VI-RADS (vesical imaging-reporting and data system)[J]. Eur Urol, 2018, 74(3): 294-306. DOI: 10.1016/j.eururo.2018.04.029.
[10]
FENG C, WANG Y C, DAN G Y, et al. Evaluation of a fractional-order calculus diffusion model and bi-parametric VI-RADS for staging and grading bladder urothelial carcinoma[J].Eur Radiol, 2022, 32(2): 890-900. DOI: 10.1007/s00330-021-08203-2.
[11]
BABJUK M, BURGER M, COMPÉRAT E M, et al. European association of urology guidelines on non-muscle-invasive bladder cancer (TaT1 and carcinoma in situ)-2019 update[J]. Eur Urol, 2019, 76(5): 639-657. DOI: 10.1016/j.eururo.2019.08.016.
[12]
CUMBERBATCH M G K, FOERSTER B, CATTO J W F, et al. Repeat transurethral resection in non-muscle-invasive bladder cancer: a systematic review[J]. Eur Urol, 2018, 73(6): 925-933. DOI: 10.1016/j.eururo.2018.02.014.
[13]
UENO Y, TAKEUCHI M, TAMADA T, et al. Diagnostic accuracy and interobserver agreement for the vesical imaging-reporting and data system for muscle-invasive bladder cancer: a multireader validation study[J]. Eur Urol, 2019, 76(1): 54-56. DOI: 10.1016/j.eururo.2019.03.012.
[14]
DE PERROT T, SADJO ZOUA C, GLESSGEN C G, et al. Diffusion-weighted MRI in the genitourinary system[J/OL]. J Clin Med, 2022, 11(7): 1921 [2022-10-14]. https://pubmed.ncbi.nlm.nih.gov/35407528/. DOI: 10.3390/jcm11071921.
[15]
ABOUELKHEIR R T, ABDELHAMID A, ABOU EL-GHAR M, et al. Imaging of bladder cancer: standard applications and future trends[J/OL]. Medicina, 2021, 57(3): 220 [2022-10-14]. https://pubmed.ncbi.nlm.nih.gov/33804350/. DOI: 10.3390/medicina57030220.
[16]
WOO S M, SUH C H, KIM S Y, et al. Diagnostic performance of MRI for prediction of muscle-invasiveness of bladder cancer: a systematic review and meta-analysis[J]. Eur J Radiol, 2017, 95: 46-55. DOI: 10.1016/j.ejrad.2017.07.021.
[17]
GANDHI N, KRISHNA S, BOOTH C M, et al. Diagnostic accuracy of magnetic resonance imaging for tumour staging of bladder cancer: systematic review and meta-analysis[J]. BJU Int, 2018, 122(5): 744-753. DOI: 10.1111/bju.14366.
[18]
VAN DER POL C B, SAHNI V A, EBERHARDT S C, et al. ACR appropriateness criteria® PretreatmentStaging of muscle-invasive BladderCancer[J]. J Am Coll Radiol, 2018, 15(5): S150-S159. DOI: 10.1016/j.jacr.2018.03.020.
[19]
WONG B S, DURAN C H, WILLIAMS S B. Vesical imaging reporting and data system (VI-RADS) and impact on identifying depth of invasion with subsequent management in bladder cancer patients: ready for prime time?[J]. Transl Androl Urol, 2020, 9(6): 2467-2470. DOI: 10.21037/tau-20-839.
[20]
SÉGUIER D, PUECH P, KOOL R, et al. Multiparametric magnetic resonance imaging for bladder cancer: a comprehensive systematic review of the Vesical Imaging-Reporting and Data System (VI-RADS) performance and potential clinical applications[J/OL]. Ther Adv Urol, 2021, 13: 17562872211039583 [2022-10-15]. https://pubmed.ncbi.nlm.nih.gov/34457041/. DOI: 10.1177/17562872211039583.
[21]
ERKOC M, OTUNCTEMUR A, BOZKURT M, et al. The efficacy and reliability of VI-RADS in determining candidates for repeated transurethral resection in patients with high-risk non-muscle invasive bladder cancer[J/OL]. Int J Clin Pract, 2021, 75(9): e14584 [2022-10-17]. https://pubmed.ncbi.nlm.nih.gov/34185372/. DOI: 10.1111/ijcp.14584.
[22]
ARITA Y, SHIGETA K, AKITA H, et al. Clinical utility of the Vesical Imaging-Reporting and Data System for muscle-invasive bladder cancer between radiologists and urologists based on multiparametric MRI including 3D FSE T2-weighted acquisitions[J].Eur Radiol, 2021, 31(2): 875-883. DOI: 10.1007/s00330-020-07153-5.
[23]
WANG Z Y, SHANG Y Y, LUAN T, et al. Evaluation of the value of the VI-RADS scoring system in assessing muscle infiltration by bladder cancer[J/OL]. Cancer Imaging, 2020, 20(1): 26 [2022-10-17]. https://pubmed.ncbi.nlm.nih.gov/32252816/. DOI: 10.1186/s40644-020-00304-3.
[24]
HUANG L, KONG Q C, LIU Z Z, et al. The diagnostic value of MR imaging in differentiating T staging of bladder cancer: a meta-analysis[J]. Radiology, 2018, 286(2): 502-511. DOI: 10.1148/radiol.2017171028.
[25]
JURI H, HIGASHIYAMA A, YAMAMOTO K, et al. Comparison of reduced field-of-view DWI and full field-of view DWI for the differentiation between non-muscle invasive bladder cancer and muscle invasive bladder cancer using VI-RADS[J/OL]. PLoS One, 2022, 17(7): e0271470 [2022-10-18]. https://pubmed.ncbi.nlm.nih.gov/35857788/. DOI: 10.1371/journal.pone.0271470.
[26]
MESSINA E, PISCIOTTI M L, PECORARO M, et al. The use of MRI in urothelial carcinoma[J]. Curr Opin Urol, 2022, 32(5): 536-544. DOI: 10.1097/mou.0000000000001011.
[27]
PIZZI A D, MASTRODICASA D, TARASCHI A, et al. Conspicuity and muscle-invasiveness assessment for bladder cancer using VI-RADS: a multi-reader, contrast-free MRI study to determine optimal b-values for diffusion-weighted imaging[J]. Abdom Radiol, 2022, 47(5): 1862-1872. DOI: 10.1007/s00261-022-03490-9.
[28]
BARCHETTI G, SIMONE G, CERAVOLO I, et al. Multiparametric MRI of the bladder: inter-observer agreement and accuracy with the Vesical Imaging-Reporting and Data System (VI-RADS) at a single reference center[J].Eur Radiol, 2019, 29(10): 5498-5506. DOI: 10.1007/s00330-019-06117-8.
[29]
WANG H J, LUO C, ZHANG F, et al. Multiparametric MRI for bladder cancer: validation of VI-RADS for the detection of detrusor muscle invasion[J]. Radiology, 2019, 291(3): 668-674. DOI: 10.1148/radiol.2019182506.
[30]
LIU S H, XU F J, XU T Y, et al. Evaluation of Vesical Imaging-Reporting and Data System (VI-RADS) scoring system in predicting muscle invasion of bladder cancer[J]. Transl Androl Urol, 2020, 9(2): 445-451. DOI: 10.21037/tau.2020.02.16.
[31]
HONG S B, LEE N K, KIM S, et al. Vesical imaging-reporting and data system for multiparametric MRI to predict the presence of muscle invasion for bladder cancer[J]. J Magn Reson Imaging, 2020, 52(4): 1249-1256. DOI: 10.1002/jmri.27141.
[32]
FRAGKOULIS C, GLYKAS I, PAPADOPOULOS G, et al. Multiparametric MRI in differentiation between muscle invasive and non-muscle invasive urinary bladder cancer with vesical imaging reporting and data system (VI-RADS) application[J/OL]. Br J Radiol, 2020, 93(1109): 20200025 [2022-10-19]. https://pubmed.ncbi.nlm.nih.gov/31573328/. DOI: 10.1259/bjr.20200025.
[33]
MARCHIONI M, PRIMICERI G, DELLI PIZZI A, et al. Could bladder multiparametric MRI be introduced in routine clinical practice? role of the new VI-RADS score: results from a prospective study[J/OL]. Clin Genitourin Cancer, 2020, 18(5): 409-415.e1 [2022-10-19]. https://www.clinical-genitourinary-cancer.com/article/S1558-7673(20)30051-3/fulltext. DOI: 10.1016/j.clgc.2020.03.002.
[34]
AKCAY A, YAGCI A B, CELEN S, et al. VI-RADS score and tumor contact length in MRI: a potential method for the detection of muscle invasion in bladder cancer[J]. Clin Imaging, 2021, 77: 25-36. DOI: 10.1016/j.clinimag.2021.02.026.
[35]
TAGUCHI S, TAMBO M, WATANABE M, et al. Prospective validation of vesical imaging-reporting and data system using a next-generation magnetic resonance imaging scanner-is denoising deep learning reconstruction useful?[J]. J Urol, 2021, 205(3): 686-692. DOI: 10.1097/ju.0000000000001373.
[36]
DELLI P A, MASTRODICASA D, MARCHIONI M, et al. Bladder cancer: do we need contrast injection for MRI assessment of muscle invasion? A prospective multi-reader VI-RADS approach[J]. Eur Radiol, 2021, 31(6): 3874-3883. DOI: 10.1007/s00330-020-07473-6.
[37]
ELSHETRY A S F, EL-FAWAKRY R M, HAMED E M, et al. Diagnostic accuracy and discriminative power of biparametric versus multiparametric MRI in predicting muscle-invasive bladder cancer[J/OL]. Eur J Radiol, 2022, 151: 110282 [2022-10-19]. https://www.ejradiology.com/article/S0720-048X(22)00132-2/fulltext. DOI: 10.1016/j.ejrad.2022.110282.
[38]
WATANABE M, TAGUCHI S, MACHIDA H, et al. Clinical validity of non-contrast-enhanced VI-RADS: prospective study using 3-T MRI with high-gradient magnetic field[J]. Eur Radiol, 2022, 32(11): 7513-7521. DOI: 10.1007/s00330-022-08813-4.
[39]
ASLAN S, CAKIR I M, OGUZ U, et al. Comparison of the diagnostic accuracy and validity of biparametric MRI and multiparametric MRI-based VI-RADS scoring in bladder cancer; is contrast material really necessary in detecting muscle invasion?[J].Abdom Radiol, 2022, 47(2): 771-780. DOI: 10.1007/s00261-021-03383-3.
[40]
MENG X Y, HU H L, WANG Y C, et al. Accuracy and challenges in the vesical imaging-reporting and data system for staging bladder cancer[J]. J Magn Reson Imaging, 2022, 56(2): 391-398. DOI: 10.1002/jmri.28064.
[41]
YE L, CHEN Y T, XU H, et al. Biparametric magnetic resonance imaging assessment for detection of muscle-invasive bladder cancer: a systematic review and meta-analysis[J].Eur Radiol, 2022, 32(9): 6480-6492. DOI: 10.1007/s00330-022-08696-5.
[42]
DEL GIUDICE F D, PECORARO M, VARGAS H A, et al. Systematic review and meta-analysis of vesical imaging-reporting and data system (VI-RADS) inter-observer reliability: an added value for muscle invasive bladder cancer detection[J/OL]. Cancers, 2020, 12(10): 2994 [2022-10-18]. https://pubmed.ncbi.nlm.nih.gov/33076505/. DOI: 10.3390/cancers12102994.
[43]
FENG Y B, ZHONG K, CHEN R, et al. Diagnostic accuracy of vesical imaging-reporting and data system (VI-RADS) for the detection of muscle-invasive bladder cancer: a meta-analysis[J].Abdom Radiol, 2022, 47(4): 1396-1405. DOI: 10.1007/s00261-022-03449-w.
[44]
MENG X Y, HU H L, WANG Y C, et al. Application of bi-planar reduced field-of-view DWI (rFOV DWI) in the assessment of muscle-invasiveness of bladder cancer[J/OL]. Eur J Radiol, 2021, 136: 109486 [2022-09-24]. https://pubmed.ncbi.nlm.nih.gov/33434861/. DOI: 10.1016/j.ejrad.2020.109486.
[45]
AHN H, HWANG S I, LEE H J, et al. Quantitation of bladder cancer for the prediction of muscle layer invasion as a complement to the vesical imaging-reporting and data system[J].Eur Radiol, 2021, 31(3): 1656-1666. DOI: 10.1007/s00330-020-07224-7.
[46]
WANG X Y, TU N, SUN F, et al. Detecting muscle invasion of bladder cancer using a proposed magnetic resonance imaging strategy[J]. J Magn Reson Imaging, 2021, 54(4): 1212-1221. DOI: 10.1002/jmri.27676.
[47]
ZHENG Z T, XU F J, GU Z R, et al. Combining multiparametric MRI radiomics signature with the vesical imaging-reporting and data system (VI-RADS) score to preoperatively differentiate muscle invasion of bladder cancer[J/OL]. Front Oncol, 2021, 11: 619893 [2022-09-27]. https://pubmed.ncbi.nlm.nih.gov/34055600/. DOI: 10.3389/fonc.2021.619893.
[48]
EL-KARAMANY T M, AL-ADL A M, HOSNY M M, et al. Clinical utility of vesical imaging-reporting and data system (VI-RADS) in non-muscle invasive bladder cancer (NMIBC) patients candidate for en-bloc transurethral resection: a prospective study[J/OL]. Urol Oncol Semin Orig Investig, 2022, 40(10): 454.e1-454.e7 [2022-09-28]. https://pubmed.ncbi.nlm.nih.gov/35466036/. DOI: 10.1016/j.urolonc.2022.03.008.
[49]
KUFUKIHARA R, KIKUCHI E, SHIGETA K, et al. Diagnostic performance of the vesical imaging-reporting and data system for detecting muscle-invasive bladder cancer in real clinical settings: comparison with diagnostic cystoscopy[J/OL]. Urol Oncol Semin Orig Investig, 2022, 40(2): 61.e1-61.e8 [2022-09-30]. https://pubmed.ncbi.nlm.nih.gov/34332846/. DOI: 10.1016/j.urolonc.2021.07.005.
[50]
UENO Y, TAMADA T, TAKEUCHI M, et al. VI-RADS: multiinstitutional multireader diagnostic accuracy and interobserver agreement study[J]. Am J Roentgenol, 2021, 216(5): 1257-1266. DOI: 10.2214/ajr.20.23604.
[51]
邓磊, 邹玉坚, 杨水清, 等. 多参数磁共振成像VI-RADS对膀胱癌肌层侵犯的预测价值和输尿管口膀胱癌肌层侵犯征象研究[J]. 磁共振成像, 2022, 13(7): 121-125. DOI: 10.12015/issn.1674-8034.2022.07.022.
DENG L, ZOU Y J, YANG S Q, et al. VI-RADS based on multi-parametric MRI for the prediction of muscle-invasion in bladder cancer and MRI findings of muscle-invasion in bladder cancer located in ureteral orifice[J]. Chin J Magn Reson Imaging, 2022, 13(7): 121-125. DOI: 10.12015/issn.1674-8034.2022.07.022.

上一篇 时间依赖扩散MRI的基本原理及其在前列腺癌中的应用
下一篇 基于MRI的人工智能在子宫内膜癌和宫颈癌中的应用进展
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2