分享:
分享到微信朋友圈
X
综述
磁共振成像在甲状腺结节诊断中的研究进展
王奕文 周哲 孙占国

WANG Y W, ZHOU Z, SUN Z G. Research progress of magnetic resonance imaging in diagnosis of thyroid nodules[J]. Chin J Magn Reson Imaging, 2023, 14(8): 150-153, 181.引用本文:王奕文, 周哲, 孙占国. 磁共振成像在甲状腺结节诊断中的研究进展[J]. 磁共振成像, 2023, 14(8): 150-153, 181. DOI:10.12015/issn.1674-8034.2023.08.026.


[摘要] 甲状腺结节为临床常见病变,检出率逐年上升,其中恶性结节约占7%~15%,术前精准的无创影像诊断对制订治疗方案至关重要。磁共振成像(magnetic resonance imaging, MRI)软组织分辨率高、无辐射,已逐步被用于甲状腺结节良恶性鉴别、颈部淋巴结转移和甲状腺癌周围组织侵犯的评估。除常规MRI平扫及增强扫描外,多种功能MRI技术如动态对比增强MRI、体素内不相干运动扩散成像、扩散峰度成像及酰胺质子转移加权成像等在甲状腺结节诊断中发挥着越来越重要的作用,同时也面临诸多挑战。本文就MRI序列及成像技术在甲状腺结节诊断中的应用进行综述,重点阐述功能MRI在甲状腺结节中的研究进展,为促进甲状腺磁共振图像质量提高,进一步通过多模态磁共振序列定量、定性诊断甲状腺结节提供新的思路和方向。
[Abstract] Thyroid nodules are common clinical lesions, and the detection rate is increasing year by year, which malignant nodules account for about 7%-15%. Early accurate non-invasive imaging evaluation is crucial to the formulation of clinical treatment plans. Magnetic resonance imaging (MRI) has been gradually used for the identification of benign and malignant thyroid nodules, cervical lymph node metastasis, and evaluation of tissue invasion around thyroid cancer due to its high resolution and radiation-free. In addition to conventional plain and enhanced MRI scans, the unique roles and advantages of functional sequences such as dynamic contrast-enhanced MRI, intravoxel incoherent motion diffusion-weighted imaging, diffusion kurtosis imaging and amide proton transfer weighted imaging in thyroid nodules have been gradually recognized. And it also faces many challenges. We reviewed the application of MRI sequences and imaging techniques in the diagnosis of thyroid nodules in this paper, focusing on the research progress of functional MRI in thyroid nodules, in order to provide new ideas and directions for promoting the quality of thyroid magnetic resonance images and further quantitative and qualitative diagnosis of thyroid nodules through multimodal MRI sequences.
[关键词] 甲状腺癌;甲状腺乳头状癌;磁共振成像;动态增强磁共振成像;体素内不相干运动成像;扩散峰度成像;T2*定量成像
[Keywords] thyroid cancer;papillary thyroid carcinoma;magnetic resonance imaging;dynamic contrast-enhanced magnetic resonance imaging;intravoxel incoherent motion;diffusion kurtosis imaging;T2* mapping

王奕文 1   周哲 2   孙占国 2*  

1 济宁医学院临床医学院,济宁 272013

2 济宁医学院附属医院医学影像科,济宁 272029

通信作者:孙占国,E-mail:yingxiangszg@163.com

作者贡献声明:孙占国查阅文献并参与稿件批阅,对稿件重要内容进行了修改;王奕文起草和撰写稿件,获取和分析本研究的数据;周哲对稿件重要内容进行了修改;孙占国获得了济宁医学院高层次科研项目培育计划基金项目资助;周哲获得了济宁市重点研发计划基金项目资助。全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 济宁市重点研发计划项目 2022YXNS076 济宁医学院高层次科研项目培育计划 JYGC2022FKJ010
收稿日期:2023-01-26
接受日期:2023-06-26
中图分类号:R445.2  R736.1 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2023.08.026
引用本文:王奕文, 周哲, 孙占国. 磁共振成像在甲状腺结节诊断中的研究进展[J]. 磁共振成像, 2023, 14(8): 150-153, 181. DOI:10.12015/issn.1674-8034.2023.08.026.

0 前言

       随着影像检查技术的发展,甲状腺结节的检出率呈不断上升趋势,其中7%~15%为恶性结节[1]。截至2020年,全球新发甲状腺癌达58.6万例,约90%为甲状腺乳头状癌(papillary thyroid carcinoma, PTC)[1, 2],早期明确诊断并评估病变与周围结构的关系、有无颈部淋巴结转移(cervical lymph node metastasis, CLNM)对临床诊疗计划制订和判断预后尤为重要[3]。超声检查是甲状腺结节诊断最常用的影像学检查方法,但其诊断准确率与操作者技术水准密切相关,对颈深部或有骨质遮挡的结构显示欠佳,对中央区(Ⅵ区)淋巴结的评价能力有限[2,4, 5]。MRI软组织分辨率高,无骨伪影干扰,能够直接多参数、多平面成像,且动态增强MRI(dynamic contrast-enhanced MRI, DCE-MRI)、体素内不相干运动(intravoxel incoherent motion, IVIM)扩散成像、扩散峰度成像(diffusion kurtosis imaging, DKI)及酰胺质子转移加权(amide proton transfer weighted, APTw)成像等功能成像序列能够定量评估病变微观结构及血流动力学特征,具有重要的临床应用价值。本文就MRI在甲状腺结节诊断中的应用进行综述,重点阐述功能MRI的研究进展,以期为甲状腺结节影像学定性诊断提供依据。

1 甲状腺常规MRI检查

       在常规MRI图像中,正常甲状腺组织表现为均匀的T1加权成像(T1 weighted image, T1WI)、T2加权成像(T2 weighted image, T2WI)等或稍高信号,注射对比剂后呈均匀强化[6]。甲状腺良性结节多为圆形或椭圆形,边界清晰,T1WI为等或稍低信号,T2WI呈不均匀高信号[7]。甲状腺癌多为形态不规则的单发病变,信号不均匀。当以细胞成分为主时,T1WI多呈等信号,T2WI呈稍高信号;以纤维成分为主时,T1WI呈稍低信号,T2WI呈等或稍低信号。谢永生等[3]认为瘤周不连续的包膜样低信号对甲状腺癌具有较大诊断价值。WANG等[8]发现,形态不规则或注射对比剂后结节延迟期环形强化往往提示恶性倾向。

       甲状腺癌颈部淋巴结转移较为常见,当颈部淋巴结呈圆形或不规则形,提示转移风险[3];淋巴结囊变和明显不均匀强化也是转移的特征性表现[9],须提高警惕。WANG等[5]在另一项预测PTC患者中央区淋巴结转移的研究中发现患者年龄、淋巴结长短径比、淋巴结有无囊变、结节直径、增强图像中结节轮廓局部突出及结节边界不清在淋巴结转移阳性组和阴性组间均差异具有统计学意义,其中增强图像显示结节轮廓局部突出、结节边界不清是诊断中央区淋巴结转移的独立预测因素。

       综上所述,常规MRI基于病变形态学及强化特点能够为临床诊疗提供初步证据,但由于个体差异及甲状腺结节病理类型的不同,良恶性结节及颈部淋巴结转移并非均表现出典型影像征象,给精准诊断带来较大困扰。

2 甲状腺DCE-MRI

       DCE-MRI通过测定对比剂通过组织时微循环的药代动力学,得到时间-信号强度曲线(time-signal intensity curves, TIC)并进一步获取达峰时间(Tpeak)、峰值信号强度(SIpeak)等定量参数,实现对病变的微血管分布和血流灌注情况的评估[10]。吴美妮等[11]对78例甲状腺结节患者行术前DCE-MRI检查,发现恶性结节的TIC类型多为平台型(Ⅱ型)和流出型(Ⅲ型),其中以Ⅱ型为主,而良性结节绝大多数为Ⅲ型。虽然良恶性甲状腺结节间的TIC曲线类型差异具有统计学意义,但由于结节间病理类型、细胞及血管密度的不同,部分恶性结节的TIC曲线呈速升速降的Ⅲ型,而部分良性结节可呈速升缓降的Ⅱ型,故而两者TIC曲线类型具有一定程度的重叠。

       DCE-MRI定量参数,包括容积转运常数(volume transfer constant, Ktrans)、血液回流常数(rate constant, Kep)、受试者工作特征初始曲线下面积(initial area under the curve, iAUC)等,可用于评估肿瘤血管生成和细胞增殖情况。陈娇等[12]采用压缩感知技术行甲状腺DCE-MRI采集,发现恶性结节的Ktrans、Kep、iAUC均大于良性结节,且三者联合得到的模型有更好的诊断效能(AUC=0.807)。同一时期,PAUDYAL等[13]尝试将DCE-MRI用于判断术前PTC的侵袭性,结果发现具有甲状腺外侵(extrathyroidal extension, ETE)特征的PTC的Ktrans明显高于无ETE特征者。以上研究表明,Ktrans、Kep值对判断甲状腺病变性质及预测恶性甲状腺结节侵袭性有重要价值。然而,DCE-MRI检查须注射对比剂,且扫描时间较长,使其应用受到一定限制。

3 扩散加权成像技术在甲状腺结节诊断中的应用

3.1 单指数扩散加权成像

       单指数扩散加权成像(diffusion-weighted imaging, DWI)能够反映水分子在体内的扩散运动[14],其定量参数表观扩散系数(apparent diffusion coefficient, ADC)值可用来描述组织结构中水分子的扩散速度,在肿瘤良恶性鉴别中应用较广泛[15]。多个研究[16, 17, 18]表明,甲状腺恶性结节较良性结节具有更低的ADC值,主要原因在于恶性结节的细胞密度较高,细胞间隙较小,限制了水分子的扩散运动。另有学者[19]将ADC值的测量应用于PTC侵袭性的评估,提出最小表观扩散系数(ADCmin)可用于区分低侵袭性和高侵袭性PTC,且高侵袭性PTC具有更低的ADC值。ZHANG等[18]探讨了ADC值和PTC发生淋巴结转移之间的关系,发现更低的ADC值还意味着更高的淋巴结转移风险。还有研究表明[20],DWI对PTC患者CLNM的预测较超声更加准确。因此,单指数DWI虽不能完全反映真实的组织扩散特征,但作为最基础、应用最广泛的扩散加权模型,其在甲状腺病变良恶性鉴别、ETE评估及CLNM检出方面均能提供不可或缺的诊断依据。

3.2 IVIM成像

       基于多b值采集和双指数扩散加权模型的IVIM成像能够同时获取组织的真实水分子扩散和微循环灌注信息,弥补了单指数DWI的不足,现已广泛应用于多种肿瘤的诊断[21]。IVIM提供的组织微观信息包括反映弥散信息的标准ADC、真扩散系数(D)和反映灌注信息的伪扩散系数(D*)、微循环灌注分数(f)。既往研究表明[22, 23, 24, 25],甲状腺恶性结节的D和f值均低于良性结节,且D值预测结节性质的诊断效能更高。此外,IVIM还可用于评估甲状腺癌的侵袭性。NÚÑEZ等[26]研究证实了具有ETE特征的甲状腺肿瘤的ADC值和D值明显低于无ETE表现的肿瘤(P<0.05)。综上所述,相较于单指数DWI,IVIM参数大幅提高了甲状腺结节诊断及结节侵袭性评估的准确性。然而IVIM对小病灶显示能力有限,图像容易受到磁化率不均匀影响。快速自旋回波序列的IVIM采集能够降低磁化率伪影,提高图像质量[21];此外,IVIM回波时间及b值的设定尚无统一标准,且f值的稳定性欠佳,因此IVIM在甲状腺病变评估中的应用还需进一步探索。

3.3 DKI

       DKI将水分子扩散视为非高斯运动状态,可敏感反映组织微观结构的复杂程度[27]。DKI的常用衍生参数有平均峰度系数(mean kurtosis, MK)、平均扩散系数(mean diffusivity, MD)等。有研究[28]联合单指数DWI与DKI鉴别甲状腺结节良恶性,发现甲状腺恶性结节的ADC和MD值明显低于良性结节,而MK值则相反,其中MD的鉴别效能较MK更优(AUC:0.797 vs. 0.701,P=0.022)。JIANG等[23]联合DKI与IVIM用于甲状腺结节良恶性的鉴别,结果表明恶性结节的MK值显著升高,MD值、D值显著降低,三者鉴别良恶性结节的AUC值均高于0.9,然而两序列联合并未显著提高彼此的诊断效能。上述研究表明,DKI衍生参数对甲状腺结节的良恶性同样具有较高的鉴别价值,可用于单指数DWI的补充检查,但在临床应用中同时进行DKI和IVIM成像的必要性仍待商榷。

3.4 拉伸指数模型

       拉伸指数模型(stretched exponential model, SEM)作为扩散模型的一种新的生物物理模型,近年来在胶质瘤、乳腺癌及肝脏病变中均有研究[29, 30, 31]。该模型可以同时提供扩散和组织异质性信息,其中扩散分布指数代表多指数衰减特性的ADC分布加权,而扩散异质性指数(α)则体现了体素内水扩散的不均匀性,且该值越接近0,水分子扩散异质性越高[24]。ZHU等[24]探讨了包括SEM在内的多种DWI模型对甲状腺良恶性病变的鉴别能力,发现恶性结节的扩散分布指数和α值均低于良性结节,且扩散分布指数的诊断效能与ADC相仿。虽然SEM用于甲状腺病变诊断的研究报道尚少,但已初步展现良好的应用前景。

3.5 甲状腺DWI面临的技术问题

       甲状腺DWI的主要挑战在于磁化率伪影引起的图像失真和呼吸、吞咽相关运动伪影[25]。小视野DWI(reduced field of view DWI, rFOV-DWI)仅对感兴趣区选择性小视野成像,能有效减少伪影、缩短扫描时间并大幅度提高图像质量。JIANG等[32]对比rFOV-DWI和同时多层采集高清扩散成像扫描,并评价两者的图像质量,认为rFOV-DWI的主观图像质量更佳且形变更小,但两者总体诊断效能无显著差异(AUC:0.964 vs. 0.926;P=0.110)。基于并行发射平台选择性激发成像技术DWI(zoomed imaging with parallel transmission technique DWI, ZOOMit-DWI)采用靶向小视野选择性激发感兴趣区进行成像,能够以较短的重复时间,获得更高的图像质量、血液对比度和较少的磁敏感伪影[33, 34]。相较于传统扩散加权技术,ZOOMit-IVIM信噪比更高,其选择性成像和快速成像的特点更适用于甲状腺结节的检查[35]。ZOOMit技术的独特优势使DWI、IVIM、DKI等序列在甲状腺病变诊断中得到广泛运用[23, 24]

4 APTw成像

       APTw成像是一种基于化学交换饱和转移的分子MRI方法,对与移动蛋白和多肽相关的酰胺质子的检测非常敏感[36],进而反映游离蛋白质的含量。ZHOU等[36]将APTw成像技术应用于脑肿瘤研究,发现相较于良性肿瘤,恶性肿瘤的APTw值更高,且APTw值与恶性程度正相关,这可能与恶性脑肿瘤组织中蛋白质含量的增加有关。然而与脑部肿瘤的研究结论不同,LIU等[34]、LI等[37]发现甲状腺恶性结节的APTw值明显低于腺瘤性结节,且该值预测甲状腺恶性结节的诊断效能较高,推测出现此差异性的原因可能是甲状腺腺瘤性结节血供丰富,血管内大量游离蛋白质穿梭,与周围细胞物质交换活跃有关。目前,APTw成像在甲状腺结节病变的应用报道尚少,其价值有待进一步研究探讨。

5 磁共振波谱成像

       磁共振波谱成像(magnetic resonance spectroscopy, MRS)是基于磁共振化学位移现象的分子成像技术,能够对组织特定代谢物的相对浓度进行测定[38]。胆碱(Cho)是细胞膜磷脂代谢的成分之一,可反映细胞膜的更新,因此大部分恶性肿瘤在3.22 ppm都有明显的胆碱峰值[39, 40]。AGHAGHAZVINI等[41]使用3 T MRI探讨活体甲状腺结节在MRS上的表现,当回波时间为136 ms时探测到在3.22 ppm处甲状腺良恶性结节的胆碱峰有显著性差异(P=0.018),且胆碱与肌酸的比值预测病理诊断的效能最高(敏感度75%、特异度100%)。目前,MRS多被用于离体甲状腺组织研究[42, 43],有待进一步开展活体应用研究,早日实现从科研到临床的跨越。

6 T2*定量成像与磁敏感加权成像

       T2*定量成像(T2* mapping)可以灵敏地反映病变组织的含水量、胶原蛋白含量和铁含量等,目前多应用于关节软骨和心脏病变的诊断[44, 45]。SHI等[46]首次尝试将T2* mapping应用于PTC与甲状腺良性结节的鉴别诊断,结果显示PTC的T2*值显著低于良性结节(P<0.001),取25.00 ms为临界值,其诊断PTC的敏感度、特异度分别为84.2%、100%;该研究者推断,PTC组织T2*值降低可能与肿瘤内大量增生血管相互挤压及微小出血现象有关。磁敏感加权成像(susceptibility weighted imaging, SWI)能半定量评价肿瘤血管分布情况和瘤内微出血。方献柳等[47]在甲状腺恶性结节的SWI图像中观察到许多形态各异、发育不良的血管及较多点、片状微出血灶,这与SHI等[46]的推断相互印证。但目前T2* mapping及SWI应用于甲状腺病变的研究较少,两者在甲状腺病变诊断中的应用价值有待进一步探讨。

7 局限性与展望

       综上所述,MRI在甲状腺结节良恶性鉴别、甲状腺癌外侵和淋巴结转移评估等方面具有重要临床意义和应用前景。但由于甲状腺本身体积较小,MRI时间较长,且图像不可避免地受到运动伪影的干扰,MRI技术在甲状腺结节诊断中应用仍处于初步探索阶段。此外,多数相关研究的样本量偏小且缺乏外部验证也是目前该领域研究所面临的重要问题。尽管MRI技术应用于甲状腺结节诊断面临较多挑战,但随着甲状腺专用表面线圈和小视野等多种成像技术的应用,图像质量和数据采集的稳定性将逐步得到提升,相信甲状腺结节MRI检查必定能为临床提供更多有价值的诊断信息。

[1]
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
[2]
中华人民共和国国家卫生健康委员会医政医管局. 甲状腺癌诊疗指南(2022年版)[J].中国实用外科杂志, 2022, 42(12):1343-1357+1363. DOI: 10.19538/j.cjps.issn1005-2208.2022.12.02.
Medical Administration Bureau of National Health Commission of the People's Republic of China. Guideline for diagnosis and treatment of thyroid cancer (2022 edition)[J]. Chin J Pract Surg, 2022, 42(12): 1343-1357+1363. DOI: 10.19538/j.cjps.issn1005-2208.2022.12.02.
[3]
谢永生, 吴美妮, 何品, 等. 甲状腺癌及其转移淋巴结的影像诊断及鉴别诊断[J]. 中华放射学杂志, 2022, 56(6)715-718. DOI: 10.3760/cma.j.cn112149-20220322-00263
XIE Y S, WU M N, HE P, et al. The imaging diagnosis and differential diagnosis of thyroid carcinoma and metastatic lymph nodes[J]. Chin J Radiol, 2022, 56(6)715-718. DOI: 10.3760/cma.j.cn112149-20220322-00263
[4]
JUNN J C, SODERLUND K A, GLASTONBURY C M. Imaging of head and neck cancer with CT, MRI, and US[J]. Semin Nucl Med, 2021, 51(1): 3-12. DOI: 10.1053/j.semnuclmed.2020.07.005.
[5]
WANG H, LIU K F, REN J L, et al. Magnetic resonance imaging characteristics of papillary thyroid carcinoma for the prediction of cervical central compartment lymph node metastasis[J]. J Comput Assist Tomogr, 2019, 43(6): 963-969. DOI: 10.1097/RCT.0000000000000883.
[6]
KANG T, KIM D W, LEE Y J, et al. Magnetic resonance imaging features of normal thyroid parenchyma and incidental diffuse thyroid disease: a single-center study[J/OL]. Front Endocrinol, 2018, 9: 746 [2023-01-25]. https://www.frontiersin.org/articles/10.3389/fendo.2018.00746/full. DOI: 10.3389/fendo.2018.00746.
[7]
邵旭辉, 张军胜, 张华文,等. 应用CT、MRI检查对甲状腺结节性质的鉴别诊断价值比较[J].中国CT和MRI杂志, 2021, 19 (11): 32-34. DOI: 10.3969/j.issn.1672-5131.2021.11.011.
SHAO X H, ZHANG J S, ZHANG H W, et al. Differential diagnosis value of CT and MRI for the nature of thyroidnodular[J]. Chin J CT MRI, 2021, 19(11): 32-34. DOI: 10.3969/j.issn.1672-5131.2021.11.011
[8]
WANG H, WEI R, LIU W Y, et al. Diagnostic efficacy of multiple MRI parameters in differentiating benign vs. malignant thyroid nodules[J].BMC Med Imaging, 2018, 18(1): 1-9. DOI: 10.1186/s12880-018-0294-0.
[9]
谢永生, 王士旭, 张妙如, 等. 采用甲状腺专用表面线圈的术前多参数MRI特征对甲状腺癌区域淋巴结转移状态的预测价值[J]. 磁共振成像, 2021, 12(4):17-22. DOI: 10.12015/issn.1674-8034.2021.04.004.
XIE Y S, WANG S X, ZHANG M R, et al. The value of preoperative multi-parametric MR features using surface coil exclusive designed for thyroid gland in predicting the metastatic status of regional lymph nodes in thyroid cancer[J]. Chin J Magn Reson Imaging, 2021, 12(4):17-22. DOI: 10.12015/issn.1674-8034.2021.04.004.
[10]
SONG C R, CHENG P, CHENG J L, et al. Differential diagnosis of nasopharyngeal carcinoma and nasopharyngeal lymphoma based on DCE-MRI and RESOLVE-DWI[J]. Eur Radiol, 2020, 30(1): 110-118. DOI: 10.1007/s00330-019-06343-0.
[11]
吴美妮, 梁龙飞, 张妙如, 等. 多参数MRI在甲状腺良恶性结节诊断中的应用价值[J]. 中华放射学杂志, 2021, 55(7): 710-715. DOI: 10.3760/cma.j.cn112149-20200822-01022
WU M N, LIANG L F, ZHANG M R, et al. Value of multi-parameter MRI in the diagnosis of thyroid benign and malignant nodules[J]. Chin J Radiol, 2021, 55(7): 710-715. DOI: 10.3760/cma.j.cn112149-20200822-01022
[12]
陈娇, 姜利伶, 刘代洪, 等. 基于压缩感知容积扫描的动态对比增强磁共振成像在甲状腺良恶性结节鉴别诊断中的价值[J]. 磁共振成像, 2022, 13(4): 38-42. DOI: 10.12015/issn.1674-8034.2022.04.007
CHEN J, JIANG L L, LIU D H, et al. The value of dynamic contrast enhanced? magnetic resonance imaging based on compressed sensing volumetric interpolated breath-hold examination in the differential diagnosis between benign and malignant thyroid nodules[J]. Chin J Magn Reson Imaging, 2022, 13(4): 38-42. DOI: 10.12015/issn.1674-8034.2022.04.007
[13]
PAUDYAL R, LU Y G, HATZOGLOU V, et al. Dynamic contrast-enhanced MRI model selection for predicting tumor aggressiveness in papillary thyroid cancers[J/OL]. NMR Biomed, 2020, 33(1) [2023-01-26]. https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/nbm.4166. DOI: 10.1002/nbm.4166.
[14]
WANG Q J, GUO Y, ZHANG J, et al. Diagnostic value of high b-value (2000 s/mm2) DWI for thyroid micronodules[J/OL]. Medicine, 2019, 98(10): e14298 [2023-01-26]. https://journals.lww.com/md-journal/Fulltext/2019/03080/Diagnostic_value_of_high_b_value__2000_s_mm2__DWI.2.aspx. DOI: 10.1097/md.0000000000014298.
[15]
SONG M H, YUE Y L, JIN Y F, et al. Intravoxel incoherent motion and ADC measurements for differentiating benign from malignant thyroid nodules: utilizing the most repeatable region of interest delineation at 3.0 T[J/OL]. Cancer Imaging, 2020, 20(1): 9 [2023-01-26]. https://cancerimagingjournal.biomedcentral.com/articles/10.1186/s40644-020-0289-2. DOI: 10.1186/s40644-020-0289-2.
[16]
KONG W D, YUE X H, REN J L, et al. A comparative analysis of diffusion-weighted imaging and ultrasound in thyroid nodules[J/OL]. BMC Med Imaging, 2019, 19(1): 92 [2023-01-26]. https://pubmed.ncbi.nlm.nih.gov/31752728/. DOI: 10.1186/s12880-019-0381-x.
[17]
TAN H, CHEN J, ZHAO Y L, et al. Feasibility of intravoxel incoherent motion for differentiating benign and malignant thyroid nodules[J]. Acad Radiol, 2019, 26(2): 147-153. DOI: 10.1016/j.acra.2018.05.011.
[18]
ZHANG H, HU S D, WANG X, et al. Using diffusion-weighted MRI to predict central lymph node metastasis in papillary thyroid carcinoma: a feasibility study[J/OL]. Front Endocrinol, 2020, 11: 326 [2023-01-26]. https://www.frontiersin.org/articles/10.3389/fendo.2020.00326/full. DOI: 10.3389/fendo.2020.00326.
[19]
SONG B, WANG H, CHEN Y Q, et al. Efficacy of apparent diffusion coefficient in predicting aggressive histological features of papillary thyroid carcinoma[J]. Diagn Interv Radiol, 2018, 24(6): 348-356. DOI: 10.5152/dir.2018.18130.
[20]
IQBAL M A, WANG X, GUOLIANG G L, et al. A comparison of the efficiency of diagnostic ultrasound and magnetic resonance imaging of cervical lymph nodes in papillary thyroid carcinoma[J]. J Xray Sci Technol, 2021, 29(6): 1033-1044. DOI: 10.3233/XST-210927.
[21]
付晓, 张琼, 卢思言, 等. 基于快速自旋回波序列的全病灶体素内不相干运动成像鉴别诊断甲状腺良恶性结节的价值[J]. 中华放射学杂志, 2020, 54(10): 954-958. DOI: 10.3760/cma.j.cn112149-20191018-00850
FU X, ZHANG Q, LU S Y, et al. The value of whole-lesion intravoxel incoherent motion diffusion weighted imaging based on turbo spin-echo sequence in differential diagnosis of thyroid benign and malignant nodules[J]. Chin J Radiol, 2020, 54(10): 954-958. DOI: 10.3760/cma.j.cn112149-20191018-00850
[22]
SONG M H, YUE Y L, GUO J S, et al. Quantitative analyses of the correlation between dynamic contrast-enhanced MRI and intravoxel incoherent motion DWI in thyroid nodules[J]. Am J Transl Res, 2020, 12(7): 3984-3992.
[23]
JIANG L L, CHEN J, HUANG H P, et al. Comparison of the differential diagnostic performance of intravoxel incoherent motion imaging and diffusion kurtosis imaging in malignant and benign thyroid nodules[J/OL].Front Oncol, 2022, 12: 895972 [2023-01-26]. https://doi.org/10.3389/fonc.2022.895972. DOI: 10.3389/fonc.2022.895972.
[24]
ZHU X, WANG J, WANG Y C, et al. Quantitative differentiation of malignant and benign thyroid nodules with multi-parameter diffusion-weighted imaging[J]. World J Clin Cases, 2022, 10(24): 8587-8598. DOI: 10.12998/wjcc.v10.i24.8587.
[25]
SONG M H, JIN Y F, GUO J S, et al. Application of whole-lesion intravoxel incoherent motion analysis using iZOOM DWI to differentiate malignant from benign thyroid nodules[J]. Acta Radiol, 2019, 60(9): 1127-1134. DOI: 10.1177/0284185118813599.
[26]
NÚÑEZ D A, LU Y G, PAUDYAL R, et al. Quantitative non-Gaussian intravoxel incoherent motion diffusion-weighted imaging metrics and surgical pathology for stratifying tumor aggressiveness in papillary thyroid carcinomas[J]. Tomography, 2019, 5(1: 26-35. DOI: 10.18383/j.tom.2018.00054.
[27]
CAO L K, CHEN J, DUAN T, et al. Diffusion kurtosis imaging (DKI) of hepatocellular carcinoma: correlation with microvascular invasion and histologic grade[J]. Quant Imaging Med Surg, 2019, 9(4: 590-602. DOI: 10.21037/qims.2019.02.14.
[28]
SHI R Y, YAO Q Y, ZHOU Q Y, et al. Preliminary study of diffusion kurtosis imaging in thyroid nodules and its histopathologic correlation[J]. Eur Radiol, 2017, 27(11: 4710-4720. DOI: 10.1007/s00330-017-4874-0.
[29]
LIN L, XUE Y, DUAN Q, et al. Grading meningiomas using mono-exponential, bi-exponential and stretched exponential model-based diffusion-weighted MR imaging[J/OL]. Clin Radiol, 2019, 74(8: 651.e15-651.e23 [2023-01-26]. https://www.clinicalradiologyonline.net/article/S0009-9260(19)30194-1/fulltext. DOI: 10.1016/j.crad.2019.04.007.
[30]
LIU C L, WANG K, LI X D, et al. Breast lesion characterization using whole-lesion histogram analysis with stretched-exponential diffusion model[J]. J Magn Reson Imaging, 2018, 47(6: 1701-1710. DOI: 10.1002/jmri.25904.
[31]
SEO N, CHUNG Y E, PARK Y N, et al. Liver fibrosis: stretched exponential model outperforms mono-exponential and bi-exponential models of diffusion-weighted MRI[J]. Eur Radiol, 2018, 28(7: 2812-2822. DOI: 10.1007/s00330-017-5292-z.
[32]
JIANG L L, ZHANG J B, CHEN J, et al. rFOV-DWI and SMS-RESLOVE-DWI in patients with thyroid nodules: comparison of image quality and apparent diffusion coefficient measurements[J/OL]. Magn Reson Imaging, 2022, 91: 62-68 [2023-01-26]. https://pubmed.ncbi.nlm.nih.gov/35643334/. DOI: 10.1016/j.mri.2022.05.010.
[33]
LIU W G, LIU H, XIE S M, et al. Comparing the clinical utility of single-shot, readout-segmented and zoomit echo-planar imaging in diffusion-weighted imaging of the kidney at 3T[J/OL]. Sci Rep, 2022, 12: 12389 [2023-01-26]. https://www.nature.com/articles/s41598-022-16670-w. DOI: 10.1038/s41598-022-16670-w.
[34]
LIU R J, JIANG G H, GAO P, et al. Non-invasive amide proton transfer imaging and ZOOM diffusion-weighted imaging in differentiating benign and malignant thyroid micronodules[J/OL]. Front Endocrinol, 2018, 9: 747 [2023-01-26]. https://www.frontiersin.org/articles/10.3389/fendo.2018.00747/full. DOI: 10.3389/fendo.2018.00747.
[35]
罗潇, 何永胜, 戚轩, 等. T 2* mapping和ZOOMit IVIM序列鉴别诊断甲状腺良恶性结节的价值[J]. 中华放射学杂志, 2021, 55(7: 729-733. DOI: 10.3760/cma.j.cn112149-20200617-00827.
LUO X, HE Y S, QI X, et al. Role of T 2* mapping and ZOOMit IVIM in differentiating benign and malignant thyroid nodules[J]. Chin J Radiol, 2021, 55(7: 729-733. DOI: 10.3760/cma.j.cn112149-20200617-00827.
[36]
ZHOU J Y, HEO H Y, KNUTSSON L, et al. APT-weighted MRI: techniques, current neuro applications, and challenging issues[J]. J Magn Reson Imaging, 2019, 50(2: 347-364. DOI: 10.1002/jmri.26645.
[37]
LI G M, JIANG G H, MEI Y J, et al. Applying amide proton transfer-weighted imaging (APTWI) to distinguish papillary thyroid carcinomas and predominantly solid adenomatous nodules: comparison with diffusion-weighted imaging[J/OL]. Front Oncol, 2020, 10: 918 [2023-01-26]. https://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2020.00918/full. DOI: 10.3389/fonc.2020.00918.
[38]
GUPTA A, HOUSTON B. Cardiac 1H MR spectroscopy: development of the past five decades and future perspectives[J]. Heart Fail Rev, 2021, 26(4: 839-859. DOI: 10.1007/s10741-020-10059-5.
[39]
JULIÀ-SAPÉ M, CANDIOTA A, ARÚS C. Cancer metabolism in a snapshot: MRS(I)[J/OL]. NMR Biomed, 2019, 32(10: e4054 [2023-01-26]. https://doi.org/10.1002/nbm.4054. DOI: 10.1002/nbm.4054.
[40]
NATASA P B, OLIVERA S, DUSKO K, et al. Is elevated choline on magnetic resonance spectroscopy a reliable marker of breast lesion malignancy?[J/OL]. Front Oncol, 2021, 11: 610354 [2023-01-26]. https://doi.org/10.3389/fonc.2021.610354. DOI: 10.3389/fonc.2021.610354.
[41]
AGHAGHAZVINI L, PIROUZI P, SHARIFIAN H, et al. 3T magnetic resonance spectroscopy as a powerful diagnostic modality for assessment of thyroid nodules[J]. Arch Endocrinol Metab, 2018, 62(5: 501-505. DOI: 10.20945/2359-3997000000069.
[42]
NODA Y, KANEMATSU M, GOSHIMA S, et al. MRI of the thyroid for differential diagnosis of benign thyroid nodules and papillary carcinomas[J/OL]. AJR Am J Roentgenol, 2015, 204(3: W332-W335 [2023-01-26]. https://pubmed.ncbi.nlm.nih.gov/25714319/. DOI: 10.2214/AJR.14.13344.
[43]
MINUTO M N, SHINTU L, CALDARELLI S. Proteomics, and metabolomics: magnetic resonance spectroscopy for the presurgical screening of thyroid nodules[J]. Curr Genomics, 2014, 15(3: 178-183. DOI: 10.2174/1389202915999140404100701.
[44]
TAO H Y, QIAO Y, HU Y W, et al. Quantitative T2-mapping and T2 -mapping evaluation of changes in cartilage matrix after acute anterior cruciate ligament rupture and the correlation between the results of both methods[J/OL]. Biomed Res Int, 2018, 2018: 1-8 5 [2023-01-26]. https://www.hindawi.com/journals/bmri/2018/7985672/. DOI: 10.1155/2018/7985672.
[45]
TRIADYAKSA P, OUDKERK M, SIJENS P E. Cardiac T2 * mapping: techniques and clinical applications[J]. J Magn Reson Imaging, 2020, 52(5: 1340-1351. DOI: 10.1002/jmri.27023.
[46]
SHI R Y, YAO Q Y, WU L M, et al. T2* mapping at 3.0T MRI for differentiation of papillary thyroid carcinoma from benign thyroid nodules[J]. J Magn Reson Imaging, 2016, 43(4: 956-961. DOI: 10.1002/jmri.25041.
[47]
方献柳, 苏丹柯, 金观桥, 等. MR磁敏感加权成像对甲状腺良恶性病灶的鉴别诊断价值[J]. 实用放射学杂志, 2016, 32(10: 1513-1516. DOI: 10.3969/j.issn.1002-1671.2016.10.007.
FANG X L, SU D K, JIN G Q, et al. Value of susceptibility weighted imaging in differential diagnosis of benign and maliagnant thyroid lesions[J]. J Pract Radiol, 2016, 32(10): 1513-1516. DOI: 10.3969/j.issn.1002-1671.2016.10.007.

上一篇 磁共振成像在甲状腺癌中的应用现状及进展
下一篇 人工智能在肝细胞癌MRI的应用进展
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2