分享:
分享到微信朋友圈
X
临床研究
基于小视野扩散加权成像的影像组学模型对临床显著性前列腺癌的诊断价值
乔晓梦 包婕 胡尘翰 曹昌浩 胡春洪 王希明

QIAO X M, BAO J, HU C H, et al. The value of radiomics model based on ZOOMit DWI in the diagnosis of clinically significant prostate cancer[J]. Chin J Magn Reson Imaging, 2023, 14(8): 79-85.引用本文:乔晓梦, 包婕, 胡尘翰, 等. 基于小视野扩散加权成像的影像组学模型对临床显著性前列腺癌的诊断价值[J]. 磁共振成像, 2023, 14(8): 79-85. DOI:10.12015/issn.1674-8034.2023.08.013.


[摘要] 目的 比较基于小视野扩散加权成像(zoomed imaging technique with parallel transmission diffusion weighted imaging, ZOOMit DWI)序列和基于分段读出平面回波(readout segmentation of long variable echo-trains, RESOLVE)DWI序列的影像组学模型对临床显著性前列腺癌(clinically significant prostate cancer, csPCa)的诊断价值。材料与方法 回顾性收集168例行术前MRI检查并经病理证实的前列腺疾患资料,其中csPCa患者83例、非csPCa患者85例。按7∶3随机划分训练集(n=117)和测试集(n=51),采用皮尔逊相关系数(pearson correlation coefficient, PCC)分析、ANOVA(analysis of variance)检验筛选影像组学特征,使用最小绝对收缩和选择算子(least absolute shrinkage and selection operator, LASSO)算法并十折交叉验证进一步筛选特征,使用逻辑回归构建模型。构建基于单一参数的影像组学模型,包括ZOOMit DWI、ZOOMit表观扩散系数(apparent diffusion coefficient, ADC)、RESOLVE DWI和RESOLVE ADC,通过比较后选取诊断效能较优的DWI和ADC联合T2加权成像(T2-weighted imaging, T2WI)建立双参数MRI影像组学模型。通过受试者工作特征(receiver operating characteristic, ROC)曲线分析模型诊断效能,使用DeLong检验比较模型间曲线下面积(area under the curve, AUC)。结果 在测试集中,ZOOMit DWI的AUC值高于RESOLVE DWI(0.917 vs. 0.851,P=0.022),ZOOMit ADC的AUC值高于RESOLVE ADC(0.948 vs. 0.871,P=0.052)。选取ZOOMit DWI和ZOOMit ADC联合T2WI建立双参数MRI影像组学模型,模型在测试集中的AUC值为0.937,明显优于前列腺特异性抗原(prostate specific antigen, PSA)(0.792,P=0.012)。结论 基于ZOOMit DWI序列的影像组学模型对csPCa的诊断效能优于基于RESOLVE DWI序列的影像组学模型,联合ZOOMit DWI序列和T2WI序列的双参数MRI影像组学模型对csPCa有较好的诊断价值。
[Abstract] Objective To compare the value between the radiomics models based on zoomed imaging technique with parallel transmission diffusion weighted imaging (ZOOMit DWI) and readout segmentation of long variable echo-trains (RESOLVE) DWI for the diagnosis of clinically significant prostate cancer (csPCa).Materials and Methods A total of 168 patients were included in this retrospective study, including 83 cases of csPCa and 85 cases of non-csPCa. The patients were grouped randomly into a training set (n=117) and a test set (n=51) in a ratio of 7∶3. Optimal radiomics features were selected by using Pearson correlation coefficient (PCC) method, analysis of variance (ANOVA) and least absolute shrinkage and selection operator (LASSO) regression with 10-fold cross-validation in the training set. Logistic regression was used to develop the models. The single sequence radiomics models were built to predict csPCa including ZOOMit DWI, ZOOMit apparent diffusion coefficient (ADC), RESOLVE DWI and RESOLVE ADC. The bi-parametric MRI (bpMRI) radiomics models was built combining DWI sequence with better diagnostic performance and T2-weighted imaging (T2WI). The receiver operating characteristic (ROC) curve was used to evaluate the diagnostic performance of the radiomics models. The DeLong test was performed to statistically compare areas under the curve (AUC).Results In the test group, ZOOMit DWI had higher AUC than RESOLVE DWI (0.917 vs. 0.851, P=0.022); ZOOMit ADC had higher AUC than RESOLVE ADC, of borderline statistical significance (0.948 vs. 0.871, P=0.052). The bpMRI radiomics models was established based on T2WI, ZOOMit DWI and ZOOMit ADC. The AUC of the bpMRI radiomics model was 0.937 in the test set, which was significantly higher than that of prostate-specific antigen (PSA) (0.792, P=0.012).Conclusions The radiomics models based on the ZOOMit DWI sequence had better diagnostic performance for csPCa than those based on the RESOLVE DWI sequence. The bpMRI radiomics model combined ZOOMit DWI sequence and T2WI showed great diagnostic value for csPCa.
[关键词] 临床显著性前列腺癌;扩散加权成像;影像组学;磁共振成像;诊断效能
[Keywords] clinically significant prostate cancer;diffusion weighted imaging;radiomics;magnetic resonance imaging;diagnostic performance

乔晓梦    包婕    胡尘翰    曹昌浩    胡春洪    王希明 *  

苏州大学附属第一医院放射科,苏州 215006

通信作者:王希明,E-mail:wangximing1998@163.com

作者贡献声明:王希明设计本研究的方案,对稿件重要内容进行了修改;乔晓梦起草和撰写稿件,获取、分析或解释本研究的数据;包婕、胡尘翰、曹昌浩、胡春洪获取、分析或解释本研究的数据,对稿件重要内容进行了修改;王希明获得了苏州市医疗卫生科技创新项目和苏州市临床重点病种诊疗技术专项项目资金资助;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 苏州市医疗卫生科技创新项目 SKY2022003 苏州市临床重点病种诊疗技术专项项目 LCZX202001
收稿日期:2022-08-26
接受日期:2023-06-29
中图分类号:R445.2  R737.25 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2023.08.013
引用本文:乔晓梦, 包婕, 胡尘翰, 等. 基于小视野扩散加权成像的影像组学模型对临床显著性前列腺癌的诊断价值[J]. 磁共振成像, 2023, 14(8): 79-85. DOI:10.12015/issn.1674-8034.2023.08.013.

0 前言

       前列腺癌(prostate cancer, PCa)是男性最常见的恶性肿瘤之一,在我国的发病率持续增长[1, 2]。早期识别临床显著性前列腺癌(clinically significant prostate cancer, csPCa)有助于临床早期干预,改善预后[3]。多参数MRI(multiparametric MRI, mp-MRI)是诊断csPCa的最佳影像学检查方法之一[4],近些年影像组学的出现为前列腺MRI术前诊断csPCa提供了稳定而可靠的工具,诊断csPCa的准确率得到明显提升[5, 6]。扩散加权成像(diffusion-weighted imaging, DWI)序列可以量化水分子在组织中随机布朗运动特性,在肿瘤良恶性鉴别中具有十分重要的价值[7]。然而,传统DWI采用单次激发平面回波成像(single-shot echo-planar imaging, ssEPI),磁化伪影较明显,信噪比低,几何畸变较重,降低了影像组学特征的诊断效能。分段读出平面回波(readout segmentation of long variable echo-trains, RESOLVE)DWI序列采用分段读出的方式完成采集和K空间填充,较传统DWI扫描时间增加,图像质量有所提升[8, 9];采用并行发射(parallel transmit, pTx)技术所得的小视野(zoomed imaging technique with parallel transmission, ZOOMit)DWI序列已被证明可显著提升图像分辨率和信噪比,图像质量优于传统DWI,并且解剖信息与T2加权图像(T2-weighted image, T2WI)一致性高,在MRI融合穿刺和PCa局部消融手术中具有优势[10, 11]。有研究表明基于ZOOMit DWI序列的影像组学模型对PCa的诊断效能优于传统DWI序列[12],但目前尚缺少基于影像组学方法比较ZOOMit DWI序列与RESOLVE DWI序列在csPCa诊断价值的研究。本研究拟基于影像组学的方法,比较ZOOMit DWI序列与RESOLVE DWI序列对csPCa的诊断效能,并探讨双参数MRI影像组学模型对csPCa的诊断价值。

1 材料与方法

1.1 研究对象

       本研究经苏州大学附属第一医院医学伦理委员会批准,免除受试者知情同意,批准文号:2017195号。回顾性收集我院2020年1月至2021年12月因泌尿系统症状或前列腺特异性抗原(prostate specific antigen, PSA)升高行前列腺MRI检查的患者资料。纳入标准:(1)具有完整临床和病理学资料;(2)于本院行穿刺活检和/或根治性前列腺切除术;(3)序列完整(同时包含T2WI、ZOOMit DWI和RESOLVE DWI序列)。排除标准:(1)既往行前列腺穿刺、手术、放疗或内分泌等治疗;(2)图像质量欠佳,影响图像分析。依据2014 ISUP指南进行Gleason分级分组(Gleason grade group, GG)[13],如患者同时有穿刺和根治术后病理,选取根治术后结果为该患者最终GG。本研究将Gleason评分≥3+4(GG≥2)定义为csPCa(csPCa组),非临床显著性病变组(non-csPCa组)包含Gleason评分=3+3(GG=1)的PCa和良性病灶,其中良性病灶包括炎症和良性增生结节。最终纳入168例患者,csPCa组83例(49.4%),non-csPCa组85例(50.6%)。

1.2 图像获取

       MRI扫描采用3.0 T超导型磁共振(Magnetom Skyra, Siemens Healthcare, Germany),使用原机自带18通道相控阵体部线圈。扫描序列包括轴位T2WI、RESOLVE DWI(b=50、1500 s/mm2)和ZOOMit DWI(b=50、1500 s/mm2),具体参数见表1

表1  MRI扫描序列及参数
Tab. 1  Magnetic resonance imaging scan sequences and parameters

1.3 图像分割

       图像分割软件采用ITK-SNAP(v3.8.0),由放射科医生A(住院医师,6年前列腺MRI诊断经验)在轴位T2WI、RESOLVE DWI和ZOOMit DWI上逐层手动勾画感兴趣区(region of interest, ROI)(图1),再将DWI的ROI复制到相应的表观扩散系数(apparent diffusion coefficient, ADC)图。病灶的解剖位置参照穿刺和/或术后的病理报告,患者存在多个病灶时选取GG较高的病灶,如GG相同则选择病灶直径较大者,勾画时尽可能覆盖整个病变但不超出病灶边缘,尽量避开尿道、出血及钙化。为了确保影像组学特征的稳定性和可重复性,由放射科医师A一周后随机选取30位患者重新勾画病灶,计算组内相关系数(intra-class correlation coefficient, ICC)。以上ROI均由一名高年资医师B(主任医师,20年前列腺MRI诊断经验)审核修改边缘,尽可能减少周围组织对病灶影像组学特征的影响。

图1  病灶勾画示例,红色区域代表感兴趣区。1A:T2加权成像(T2WI)图像;1B:RESOLVE DWI图像(b=1500 s/mm2);1C:RESOLVE ADC图;1D:ZOOMit DWI(b=1500 s/mm2)图像;1E:ZOOMit ADC图。RESOLVE DWI:分段读出平面回波扩散加权成像;RESOLVE ADC:分段读出平面回波表观扩散系数;ZOOMit DWI:小视野扩散加权成像;ZOOMit ADC:小视野表观扩散系数。
Fig. 1  Example of lesion annotation, the red areas are regions of interest. 1A: T2 weighted image (T2WI); 1B: RESOLVE DWI image, b=1500 s/mm2; 1C: RESOLVE ADC map; 1D: ZOOMit DWI image, b=1500 s/mm2; 1E: ZOOMit ADC map. RESOLVE: readout segmentation of long variable echo-trains; DWI: diffusion weighted imaging; ADC: apparent diffusion coefficient; ZOOMit: zoomed imaging technique with parallel transmission.

1.4 特征提取

       使用FAE(FeAture Explorer, v0.5.2)软件[14]对所有病灶T2WI、DWI及ADC图的ROI进行高通量特征采集,每个序列各获取1686种影像组学特征,包括原始图像特征(直方图特征、几何形态特征和纹理特征)及派生图像特征(包括小波滤波、高斯滤波器的拉普拉斯算子、平方、平方根、对数、指数、梯度、本地二进制模型2D和本地二进制模型3D),其中纹理特征提供了像素及其周围空间领域的灰度分布的相关信息,可以量化肿瘤的异质性,包括灰度共生矩阵(gray-1evel co-occurrence matrix, GLCM)、灰度游程矩阵(gray-level run length matrix, GLRLM)、灰度级大小区域矩阵(gray-level size zone matrix, GLSZM)、灰度依赖矩阵(gray-level dependence matrix, GLDM)和相邻灰度差矩阵(neighboring gray tone difference matrix, NGTDM)。使用Z-score方法对影像组学特征进行归一化。

1.5 特征筛选及模型建立

       本研究将入组病例按照7∶3的比例随机分为训练集和测试集。先对数据进行观察者内的一致性检验,保证影像组学特征的可重复性,计算组内ICC,剔除ICC<0.8的影像组学特征。随后在训练集中使用皮尔逊相关系数(Pearson correlation coefficient, PCC)方法进行特征去冗余,保留特征对PCC<0.8的特征,使用ANOVA(analysis of variance)检验进行特征筛选,再利用最小绝对收缩和选择算子(least absolute shrinkage and selection operator, LASSO)回归并十折交叉验证进一步筛选出最具预测性的特征子集,并得出相应的影像组学特征系数,最终构建逻辑回归模型。

       影像组学模型建立分为两步:(1)建立单一参数影像组学模型,分别构建RESOLVE DWI(r-DWI)、RESOLVE ADC(r-ADC)、ZOOMit DWI(z-DWI)和ZOOMit ADC(z-ADC)单参数模型,并对两种序列的DWI和ADC模型分别进行比较;(2)建立双参数影像组学模型,T2WI为病变诊断提供了重要的解剖信息,因此,本研究选择经第一步比较后诊断效能较好的DWI及ADC序列的特征联合T2WI特征建立双参数MRI影像组学模型,并将模型的预测效能与临床常用指标PSA进行比较。

1.6 统计学分析

       统计分析分别在Python(v3.7.0)、R语言(v4.2.0)和MedCalc(v19.6.4)完成。患者年龄和PSA为计量资料,不符合正态分布,以MQ1,Q3)表示,采用Mann-Whitney U检验进行两组间比较;病理结果为分类变量,以例(%)表示,使用χ2检验进行组间比较。使用受试者工作特征(receiver operating characteristic, ROC)曲线分析影像组学模型的诊断效能,曲线下面积(area under the curve, AUC)用于量化诊断效能,模型根据约登指数选取临界值,计算敏感度、特异度、阳性预测值和阴性预测值。使用DeLong检验比较模型间AUC值。分别使用“pingouin”和“glmnet”包完成ICC计算和LASSO回归分析。所有统计检验,P<0.05为差异具有统计学意义。

2 结果

2.1 临床资料

       本研究共纳入168例患者,其中csPCa组83例,non-csPCa组85例(包括非临床显著性PCa 5例与良性病变80例)。将入组病例按7∶3比例随机分为训练集和测试集,训练集与测试集患者年龄、PSA和病理结果之间的差异均无统计学意义(P=0.744、0.584、0.934),纳入患者的临床资料详见表2。csPCa组PSA水平明显高于non-csPCa组(P<0.001)。

表2  训练集和测试集患者临床资料的比较
Tab. 2  Comparison of clinical data of patients in training set and test set

2.2 一致性分析

       经ICC分析后,特征ICC范围为0.800~0.999,表明特征观察者内一致性良好。剔除组内ICC<0.8的特征,r-DWI剩余1196个特征,r-ADC剩余724个特征,z-DWI剩余990个特征,z-ADC剩余699个特征,T2WI剩余1003个特征。

2.3 影像组学特征筛选结果

       在病灶勾画过程中,医师发现部分小病灶在ZOOMit DWI序列上显示优于RESOLVE DWI序列(图2)。经过特征筛选后单参数影像组学模型r-DWI、z-DWI、r-ADC和z-ADC分别筛选出4、8、5和9个特征,双参数影像组学模型最终筛选出10个特征(图3、4)。

图2  男,69岁,前列腺特异性抗原(PSA)13.04 ng/mL,病理结果为前列腺癌(Gleason评分为4+3=7),病变位于外周带(箭)。由图可见该病灶在ZOOMit DWI图像和ZOOMit ADC图上显示更佳。2A:T2加权成像(T2WI)图像;2B:RESOLVE DWI图像(b=1500 s/mm2);2C:RESOLVE ADC图;2D:ZOOMit DWI图像(b=1500 s/mm2);2E:ZOOMit ADC图。RESOLVE DWI:分段读出平面回波扩散加权成像;RESOLVE ADC:分段读出平面回波表观扩散系数;ZOOMit DWI:小视野扩散加权成像;ZOOMit ADC:小视野表观扩散系数。
Fig. 2  A male 69-year-old patient with prostate specific antigen (PSA) 13.04 ng/mL is diagnosed with prostate cancer (Gleason score: 4+3=7) and the lesion is located in the peripheral zone (arrows). It can be seen from the figures that the lesion shows better on ZOOMit DWI image and ZOOMit ADC map. 2A: T2-weighted image (T2WI); 2B: RESOLVE DWI image, b=1500 s/mm2; 2C: RESOLVE ADC map; 2D: ZOOMit DWI (b=1500 s/mm2); 2E: ZOOMit ADC map. RESOLVE: readout segmentation of long variable echo-trains; DWI: diffusion weighted imaging; ADC: apparent diffusion coefficient; ZOOMit: zoomed imaging technique with parallel transmission.
图3  双参数MRI影像组学模型使用最小绝对收缩和选择算子(LASSO)回归筛选特征。3A:二项式偏差随参数λ的变化曲线,垂直虚线代表所选最佳Log(λ)值;3B:LASSO回归系数与λ对应关系图。最终选择的λ值为0.0102,Lg(λ)=-4.5818。
图4  双参数MRI影像组学模型最终使用的10个影像组学特征名称及其相应的权重系数。ZOOMit ADC:小视野表观扩散系数;ZOOMit DWI:基于小视野扩散加权成像。
Fig. 3  Optimal radiomics features are selected by using least absolute shrinkage and selection operator (LASSO) regression, in the radiomics models based on biparametric MRI building process. 3A: Curve of binomial deviation varying with parameter λ. The horizontal axes are the log (λ) values; 3B: Mapping of LASSO regression coefficient to λ. The optimal λ-value is 0.0102 with transformed log (λ) of -4.5818.
Fig. 4  Ten radiomics features finally used in biparametric MRI radiomics model and the corresponding coefficients. ZOOMit: zoomed imaging technique with parallel transmission; ADC: apparent diffusion coefficient; DWI: diffusion weighted imaging.

2.4 影像组学模型建立及评估

       单参数影像组学模型r-DWI、z-DWI、r-ADC和z-ADC在训练集中的AUC值分别为0.917、0.953、0.986和0.991;在测试集中的AUC值分别为0.851、0.917、0.871和0.948。在测试集中,z-DWI的AUC值高于r-DWI,差异有统计学意义(P=0.022),z-ADC的AUC值高于r-ADC,差异无统计学意义(P=0.052)。单参数影像组学模型的详细结果见表34,ROC曲线见图5

       选取ZOOMit DWI和ZOOMit ADC序列联合T2WI序列建立双参数模型(z-bpRA),z-bpRA的AUC值在训练集中为0.996,在测试集中为0.937。在测试集中,z-bpRA的AUC值高于PSA的AUC值(0.792),差异有统计学意义(P=0.012),而与z-DWI和z-ADC的AUC值之间的差异无统计学意义(P=0.487、0.368)。双参数模型的详细结果见表34,ROC曲线见图6。

图5  训练集(5A)和测试集(5B)单参数影像组学模型的受试者工作特征(ROC)曲线。
图6  训练集(6A)和测试集(6B)双参数MRI影像组学模型(z-bpRA)和前列腺特异性抗原(PSA)的ROC曲线。z-ADC:基于小视野表观扩散系数(ZOOMit ADC)的模型;r-ADC:基于分段读出平面回波表观扩散系数(RESOLVE ADC)的模型;z-DWI:基于小视野扩散加权成像(ZOOMit DWI)的模型;r-DWI:基于分段读出平面回波扩散加权成像(RESOLVE DWI)的模型;AUC:曲线下面积;z-bpRA:基于ZOOMit DWI、ZOOMit ADC和T2加权图像(T2WI)的双参数影像组学模型。
Fig. 5  Receiver operating characteristic (ROC) curves of the single sequence radiomics models in the training set (5A) and test set (5B).
Fig.6  ROC curves of the biparametric MRI radiomics model (z-bpRA) and prostate specific antigen (PSA) in the training set (6A) and test set (6B). z-ADC: the model based on ZOOMit apparent diffusion coefficient (ADC); r-ADC: the model based on RESOLVE ADC; z-DWI: the model based on ZOOMit diffusion-weighted imaging (DWI); r-DWI: the model based on RESOLVE DWI; AUC: area under the curve; RESOLVE: readout segmentation of long variable echo-trains; DWI: diffusion weighted imaging; ADC: apparent diffusion coefficient; ZOOMit: zoomed imaging technique with parallel transmission; z-bpRA: the biparametric MRI radiomics model established based on T2WI, ZOOMit DWI and ZOOMit ADC.
表3  训练集不同影像组学模型诊断效能
Tab. 3  Diagnostic performance of different radiomics models in training set
表4  测试集不同影像组学模型诊断效能
Tab. 4  Diagnostic performance of different radiomics models in test set

3 讨论

       术前早期且准确地预测csPCa对患者诊疗方案制订和改善预后有重要意义。本研究首次基于影像组学的方法,比较了ZOOMit DWI序列和RESOLVE DWI序列对csPCa的诊断效能,结果显示ZOOMit DWI序列优于RESOLVE DWI序列,有利于提升csPCa的预测准确率。

3.1 单参数影像组学模型比较结果讨论

       与传统的医师肉眼评估相比,影像组学可深度挖掘高维的形状特征和纹理特征,这些定量特征可以区分肿瘤的微观表型差异,为肿瘤异质性分析提供更多的信息,从而显著提升诊断效能。目前已经有大量研究使用影像组学方法预测csPCa,但是这些研究使用的DWI序列大多为传统DWI序列,图像质量欠佳,可能会降低模型预测效能[6,15, 16, 17, 18]。小视野ZOOMit DWI序列减少了图像失真和其他与相位编码相关的伪影,空间分辨率得到提升,获取时间减少,可以提供更多前列腺等较小器官的解剖细节,有助于病灶精准定位及诊断[19, 20, 21, 22]。目前国内外基于ZOOMit DWI的影像组学研究较少。SIM等[23]发现ZOOMit DWI序列的纹理特征有助于胆管狭窄的良恶性鉴别。HU等[12]发现基于ZOOMit DWI序列的影像组学模型在PCa诊断方面优于传统DWI序列。RESOLVE DWI相较传统DWI更为成熟,图像质量有所提升,目前已经广泛应用于临床[24, 25],上述研究并未涉及ZOOMit DWI序列与RESOLVE DWI序列的比较。

       因此,为了进一步明确前列腺MRI影像组学研究中的最佳DWI序列,本研究比较了基于ZOOMit DWI序列和RESOLVE DWI序列的影像组学模型对csPCa的诊断价值。结果显示ZOOMit DWI序列优于RESOLVE DWI序列,原因可能有以下几点。首先,RESOLVE DWI序列虽然较传统DWI序列在一定程度上提高了图像质量[26],但仍然存在磁化伪影等固有缺陷,在前列腺MRI扫描中直肠气体所致伪影较ZOOMit DWI明显,特别是外周带,且其扫描时间相对较长,可能伴随运动伪影增加,因此在病灶勾画时受图像质量影响较大[27, 28, 29, 30];其次,ZOOMit DWI序列在前列腺小病灶的显示更优,这可能提升了特征的准确性和稳定性;最后,ZOOMit DWI序列体素明显小于RESOLVE DWI序列,同等体积下可提供更为精细且丰富的纹理特征。综上,ZOOMit DWI序列提供了更符合解剖且更为精准的影像组学特征,在csPCa诊断时相较RESOLVE DWI序列表现出优势。

3.2 双参数影像组学模型的结果讨论

       T2WI序列在前列腺MRI诊断中也是极为重要的一部分[31],因此本研究在建立单参数MRI影像组学模型后,选取诊断效能较好的ZOOMit DWI序列与T2WI序列建立双参数MRI影像组学模型,其诊断csPCa的AUC值达到了0.937,明显优于临床常用指标PSA,可减少患者不必要的穿刺活检。然而,双参数MRI影像组学模型所使用的特征中并未包含T2WI的组学特征,且双参数MRI模型与ZOOMit DWI序列单参数模型的诊断效能相当,提示ZOOMit DWI序列对csPCa的诊断具有重要意义。这与GONG等[18]的研究结果相似,该研究比较了T2WI、DWI和两者联合的影像组学模型对高级别PCa的诊断效能,发现联合模型和DWI单序列模型的AUC值之间的差异无统计学意义(测试集P=0.924),原因可能为DWI序列可反映肿瘤的微观结构变化和功能信息,与PCa危险程度相关,而T2WI则更多地反映解剖信息。

3.3 本研究的局限性

       本研究存在一些局限性:(1)本研究为单中心研究且样本量相对较小,未来的研究应扩大样本量并引用多中心数据来进一步验证模型的临床价值;(2)本研究部分患者将穿刺病理作为金标准,可能与术后病理存在差异;(3)本研究未对前列腺病灶位置进行区分,不同区域的肿瘤影像组学特征可能存在差异,有待样本量扩大后进一步分组研究。

4 结论

       综上,基于ZOOMit DWI序列的影像组学模型对csPCa的诊断效能优于基于RESOLVE DWI序列的影像组学模型,联合ZOOMit DWI序列与T2WI序列的双参数MRI影像组学模型在csPCa的诊断中具有较高的临床应用价值。

[1]
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
[2]
CULP M B, SOERJOMATARAM I, EFSTATHIOU J A, et al. Recent global patterns in prostate cancer incidence and mortality rates[J]. Eur Urol, 2020, 77(1): 38-52. DOI: 10.1016/j.eururo.2019.08.005.
[3]
ALBERTSEN P C. Prostate cancer screening and treatment: where have we come from and where are we going?[J]. BJU Int, 2020, 126(2): 218-224. DOI: 10.1111/bju.15153.
[4]
STABILE A, GIGANTI F, ROSENKRANTZ A B, et al. Multiparametric MRI for prostate cancer diagnosis: current status and future directions[J]. Nat Rev Urol, 2020, 17(1): 41-61. DOI: 10.1038/s41585-019-0212-4.
[5]
CHENG X Q, CHEN Y T, XU H, et al. Avoiding unnecessary systematic biopsy in clinically significant prostate cancer: comparison between MRI-based radiomics model and PI-RADS category[J]. J Magn Reson Imaging, 2023, 57(2): 578-586. DOI: 10.1002/jmri.28333.
[6]
HECTORS S J, CHERNY M, YADAV K K, et al. Radiomics features measured with multiparametric magnetic resonance imaging predict prostate cancer aggressiveness[J]. J Urol, 2019, 202(3): 498-505. DOI: 10.1097/JU.0000000000000272.
[7]
PADHANI A R, LIU G Y, KOH D M, et al. Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations[J]. Neoplasia, 2009, 11(2): 102-125. DOI: 10.1593/neo.81328.
[8]
ZHANG H, HUANG H J, ZHANG Y Y, et al. Diffusion-weighted MRI to assess sacroiliitis: improved image quality and diagnostic performance of readout-segmented echo-planar imaging (EPI) over conventional single-shot EPI[J]. AJR Am J Roentgenol, 2021, 217(2): 450-459. DOI: 10.2214/AJR.20.23953.
[9]
HUANG C C, ZHAN C N, HU Y Q, et al. Histogram analysis of breast diffusion kurtosis imaging: a comparison between readout-segmented and single-shot echo-planar imaging sequence[J]. Quant Imaging Med Surg, 2023, 13(2): 735-746. DOI: 10.21037/qims-22-475.
[10]
THIERFELDER K M, SCHERR M K, NOTOHAMIPRODJO M, et al. Diffusion-weighted MRI of the prostate: advantages of zoomed EPI with parallel-transmit-accelerated 2D-selective excitation imaging[J]. Eur Radiol, 2014, 24(12): 3233-3241. DOI: 10.1007/s00330-014-3347-y.
[11]
BRENDLE C, MARTIROSIAN P, SCHWENZER N F, et al. Diffusion-weighted imaging in the assessment of prostate cancer: comparison of zoomed imaging and conventional technique[J]. Eur J Radiol, 2016, 85(5): 893-900. DOI: 10.1016/j.ejrad.2016.02.020.
[12]
HU L, ZHOU D W, FU C X, et al. Advanced zoomed diffusion-weighted imaging vs. full-field-of-view diffusion-weighted imaging in prostate cancer detection: a radiomic features study[J]. Eur Radiol, 2021, 31(3): 1760-1769. DOI: 10.1007/s00330-020-07227-4.
[13]
EPSTEIN J I, EGEVAD L, AMIN M B, et al. The 2014 international society of urological pathology (ISUP) consensus conference on gleason grading of prostatic carcinoma: definition of grading patterns and proposal for a new grading system[J]. Am J Surg Pathol, 2016, 40(2): 244-252. DOI: 10.1097/PAS.0000000000000530.
[14]
SONG Y, ZHANG J, ZHANG Y D, et al. FeAture Explorer (FAE): a tool for developing and comparing radiomics models[J/OL]. PLoS One, 2020, 15(8): e0237587 [2022-01-20]. https://pubmed.ncbi.nlm.nih.gov/32804986. DOI: 10.1371/journal.pone.0237587.
[15]
MONTOYA PEREZ I, MERISAARI H, JAMBOR I, et al. Detection of prostate cancer using biparametric prostate MRI, radiomics, and kallikreins: a retrospective multicenter study of men with a clinical suspicion of prostate cancer[J]. J Magn Reson Imaging, 2022, 55(2): 465-477. DOI: 10.1002/jmri.27811.
[16]
CHEN T, LI M J, GU Y F, et al. Prostate cancer differentiation and aggressiveness: assessment with a radiomic-based model vs. PI-RADS v2[J]. J Magn Reson Imaging, 2019, 49(3): 875-884. DOI: 10.1002/jmri.26243.
[17]
MIN X D, LI M, DONG D, et al. Multi-parametric MRI-based radiomics signature for discriminating between clinically significant and insignificant prostate cancer: cross-validation of a machine learning method[J]. Eur J Radiol, 2019, 115: 16-21. DOI: 10.1016/j.ejrad.2019.03.010.
[18]
GONG L X, XU M, FANG M J, et al. Noninvasive prediction of high-grade prostate cancer via biparametric MRI radiomics[J]. J Magn Reson Imaging, 2020, 52(4): 1102-1109. DOI: 10.1002/jmri.27132.
[19]
YıLDıRıM İ O, SAĞLıK S, ÇELIK H. Conventional and ZOOMit DWI for evaluation of testis in patients with ipsilateral varicocele[J]. Am J Roentgenol, 2017, 208(5): 1045-1050. DOI: 10.2214/ajr.16.17292.
[20]
KIM H, LEE J M, YOON J H, et al. Reduced field-of-view diffusion-weighted magnetic resonance imaging of the pancreas: comparison with conventional single-shot echo-planar imaging[J]. Korean J Radiol, 2015, 16(6): 1216-1225. DOI: 10.3348/kjr.2015.16.6.1216.
[21]
ATTENBERGER U I, TAVAKOLI A, STOCKER D, et al. Reduced and standard field-of-view diffusion weighted imaging in patients with rectal cancer at 3 T-Comparison of image quality and apparent diffusion coefficient measurements[J/OL]. Eur J Radiol, 2020, 131: 109257 [2022-01-20]. https://pubmed.ncbi.nlm.nih.gov/32947092. DOI: 10.1016/j.ejrad.2020.109257.
[22]
SUN K B, ZHONG Z, DAN G Y, et al. Three-dimensional reduced field-of-view imaging (3D-rFOVI)[J]. Magn Reson Med, 2022, 87(5): 2372-2379. DOI: 10.1002/mrm.29121.
[23]
SIM K C, PARK B J, HAN N Y, et al. Efficacy of ZOOMit coronal diffusion-weighted imaging and MR texture analysis for differentiating between benign and malignant distal bile duct strictures[J]. Abdom Radiol (NY), 2020, 45(8): 2418-2429. DOI: 10.1007/s00261-020-02625-0.
[24]
THIAN Y L, XIE W, PORTER D A, et al. Readout-segmented echo-planar imaging for diffusion-weighted imaging in the pelvis at 3T-A feasibility study[J]. Acad Radiol, 2014, 21(4): 531-537. DOI: 10.1016/j.acra.2014.01.005.
[25]
PENG S Y, GUO Y H, ZHANG X Y, et al. High-resolution DWI with simultaneous multi-slice readout-segmented echo planar imaging for the evaluation of malignant and benign breast lesions[J/OL]. Diagnostics (Basel), 2021, 11(12): 2273 [2022-03-20]. https://pubmed.ncbi.nlm.nih.gov/34943509. DOI: 10.3390/diagnostics11122273.
[26]
XIE S M, MASOKANO I B, LIU W G, et al. Comparing the clinical utility of single-shot echo-planar imaging and readout-segmented echo-planar imaging in diffusion-weighted imaging of the liver at 3 Tesla[J/OL]. Eur J Radiol, 2021, 135: 109472 [2022-03-20]. https://pubmed.ncbi.nlm.nih.gov/33370640. DOI: 10.1016/j.ejrad.2020.109472.
[27]
LIU W G, LIU H, XIE S M, et al. Comparing the clinical utility of single-shot, readout-segmented and zoomit echo-planar imaging in diffusion-weighted imaging of the kidney at 3 T[J/OL]. Sci Rep, 2022, 12(1): 12389 [2022-03-20]. https://pubmed.ncbi.nlm.nih.gov/35859112. DOI: 10.1038/s41598-022-16670-w.
[28]
SEEGER A, BATRA M, SÜSSKIND D, et al. Assessment of uveal melanomas using advanced diffusion-weighted imaging techniques: value of reduced field of view DWI ("zoomed DWI") and readout-segmented DWI (RESOLVE)[J]. Acta Radiol, 2019, 60(8): 977-984. DOI: 10.1177/0284185118806666.
[29]
但汉丽, 谭钰川, 杨露, 等. MR不同弥散加权序列前列腺图像质量评价研究[J]. 磁共振成像, 2021, 12(3): 54-58. DOI: 10.12015/issn.1674-8034.2021.03.012.
DAN H L, TAN Y C, YANG L, et al. Image quality assessment on MR images of the prostate acquired in different diffusion weighted sequences[J]. Chin J Magn Reson Imaging, 2021, 12(3): 54-58. DOI: 10.12015/issn.1674-8034.2021.03.012.
[30]
KLINGEBIEL M, ULLRICH T, QUENTIN M, et al. Advanced diffusion weighted imaging of the prostate: comparison of readout-segmented multi-shot, parallel-transmit and single-shot echo-planar imaging[J/OL]. Eur J Radiol, 2020, 130: 109161 [2022-03-15]. https://pubmed.ncbi.nlm.nih.gov/32650128. DOI: 10.1016/j.ejrad.2020.109161.
[31]
TURKBEY B, ROSENKRANTZ A B, HAIDER M A, et al. Prostate imaging reporting and data system version 2.1: 2019 update of prostate imaging reporting and data system version 2[J]. Eur Urol, 2019, 76(3): 340-351. DOI: 10.1016/j.eururo.2019.02.033.

上一篇 基于磁共振扩散峰度成像的直肠癌微卫星不稳定状态研究
下一篇 基于MRI定量、病理及血细胞参数的ⅡB~Ⅲ期宫颈癌同步放化疗疗效预测模型构建及外部验证
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2