分享:
分享到微信朋友圈
X
综述
MRI影像组学在乳腺癌诊疗中的研究进展
伏秋燚 孙琨 严福华

Cite this article as: FU Q Y, SUN K, YAN F H. Overview of MRI-based radiomics in breast cancer[J]. Chin J Magn Reson Imaging, 2023, 14(4): 166-170, 187.本文引用格式:伏秋燚, 孙琨, 严福华. MRI影像组学在乳腺癌诊疗中的研究进展[J]. 磁共振成像, 2023, 14(4): 166-170, 187. DOI:10.12015/issn.1674-8034.2023.04.029.


[摘要] 乳腺癌的发病率和死亡率在全球大多数国家女性肿瘤中排名第一,尽管目前在早期发现病灶和及时治疗疾病方面取得了较大进步,但在实现精准医疗方面仍需努力探索。如能对病灶及其周围组织进行精准的定量评估以反映其整体异质性,将有助于为乳腺癌患者制订个性化诊疗方案。影像组学是基于影像图像提取高维数据,通过建立可靠的模型对这些数据进行分析以量化肿瘤异质性,用于疾病的诊断、鉴别诊断及预测,从而提供更多可靠的信息以支持临床决策。影像组学作为目前研究的前沿领域之一,具有较高的临床研究价值。本文将基于MRI图像提取的影像组学特征在鉴别乳腺良恶性肿瘤、区分乳腺癌不同分子亚型,预测腋窝及前哨淋巴结状态、对新辅助化疗的疗效评估及预后预测几方面进行介绍,并阐述当前影像组学发展的前景与局限性,以期改进下一步的研究。
[Abstract] The incidence and mortality of breast cancer ranks first among female tumors in most countries around the world. Although great progress has been made in early detection of lesions and timely treatment of the disease, there is still a gap in the realization of precision medicine and personalized diagnosis and treatment. Efforts are needed to reflect overall heterogeneity of tumors by accurate quantitative assessment of the lesion and its surrounding tissue, which will help to formulate personalized diagnosis and treatment plans for breast cancer patients. Radiomics aims to extract high-dimensional data based on images, and analyze these data by establishing reliable models to quantify tumor heterogeneity for disease diagnosis, differential diagnosis and prediction, thereby providing more reliable evidence to support clinical decision. As one of the frontier fields of current research, radiomics has great clinical research value. In this paper, based on the radiomic features of MRI images, the differentiation of benign and malignant breast tumors, distinction of different molecular subtypes of breast cancer, prediction of axillary and sentinel lymph node status, evaluation of the efficacy of neoadjuvant chemotherapy and prognosis prediction will be introduced. The prospects and limitations of current radiomics development are described to improve future research.
[关键词] 乳腺癌;影像组学;磁共振成像;诊断;预测;预后;精准医疗
[Keywords] breast cancer;radiomics;magnetic resonance imaging;diagnosis;prediction;prognosis;precision medicine

伏秋燚    孙琨    严福华 *  

上海交通大学医学院附属瑞金医院放射科,上海 200025

通信作者:严福华,E-mail:yfh11655@rjh.com.cn

作者贡献声明:严福华设计本研究的方案,对稿件重要的智力内容进行了修改;伏秋燚起草和撰写稿件,获取、分析或解释本研究的数据;孙琨分析或解释本研究的数据/文献,对稿件重要的智力内容进行了修改;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


收稿日期:2022-10-31
接受日期:2023-03-03
中图分类号:R445.2  R737.9 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2023.04.029
本文引用格式:伏秋燚, 孙琨, 严福华. MRI影像组学在乳腺癌诊疗中的研究进展[J]. 磁共振成像, 2023, 14(4): 166-170, 187. DOI:10.12015/issn.1674-8034.2023.04.029.

0 前言

       乳腺癌已经成为女性最常见的恶性肿瘤之一,也是女性癌症死亡的主要原因[1]。目前,乳腺癌的诊断主要依赖于影像学检查和临床评估,并由组织病理学结果证实。乳腺影像报告与数据系统(Breast Imaging Report and Data System, BI-RARDS)是目前常用的影像学评估肿瘤良恶性分类的方法。这种分类在一定程度上取决于放射科医生的经验。对于可疑恶性病变,粗针活检仍为目前诊断的金标准,但活检是有创的,且不能反映整个肿瘤的异质性[2, 3, 4]。通过乳腺X线摄影、超声或MRI对肿瘤形态、密度或信号、强化类型及特征、与周围组织的解剖关系等的评估已基本实现对乳腺病变进行定位及定性诊断。然而,要实现真正的个性化诊疗,还需要进行精准的定量评估[4]

       影像组学是通过高通量计算,从影像图像中快速提取大量的定量特征,将这些可能反映潜在病理生理学信息的数字医学图像转换为可挖掘的高维数据,对这些数据进行分析以支持临床决策和量化肿瘤异质性[5]。影像组学研究可以分为五个阶段:图像采集和重建、图像分割、特征提取和鉴定、分析和模型构建。影像组学特征包含形态学特征(即肿瘤在形状和体积方面的物理特征,如表面积、表面积体积比)、一阶统计数据(即直方图特征,如均值、中值、标准差、峰态、偏度、能量、熵、均匀性和方差)、二阶统计特征[即纹理特征,如灰度共生矩阵特征(gray-level co-occurrence matrix, GLCM)、灰度游程矩阵(gray-level run-length matrix, GLRLM)、灰度区域矩阵(gray-level size zone matrix, GLSZM)和邻域灰度差值矩阵(neighborhood gray-tone difference matrix, NGTDM)]、高阶统计特征(即对图像应用滤波器或数学变换后通过统计学方法得到的特征,如小波变换和高斯滤波器的拉普拉斯变换)及基于不同模型的特征[6]。这些特征与患者临床或病理数据相结合,以开发可能提高诊断和预测准确性的模型[5]

       乳腺MRI广泛应用于乳腺癌高危女性的筛查、分期、评价疗效、监测复发,特别是为乳腺X线和超声检查发现的可疑病变提供补充信息。从MRI图像中提取的高通量数据已经进行了许多影像组学研究。基于MRI图像的影像组学可以为精准医疗表征肿瘤的生物学特征提供大量潜在信息。因此,影像组学有望成为乳腺癌早期诊断和疗效评价的影像学生物标志物和无创工具。然而,目前影像组学仅应用于科学研究,且无相关标准或指南发表,还未广泛应用于临床,相关技术与方法也尚待完善,如自动或半自动图像分割技术。本综述将从基于MRI图像提取的影像组学特征在鉴别乳腺良恶性肿瘤、区分乳腺癌不同分子亚型,预测腋窝及前哨淋巴结(sentinel lymph node, SLN)状态、对新辅助化疗(neoadjuvant chemotherapy, NAC)的疗效评估及预后预测几方面进行阐述,旨在让临床医生及放射科医生了解更多关于影像组学的基本信息,为今后的临床及科研提供更多的选择。

1 影像组学在乳腺良恶性肿瘤诊断及鉴别诊断中的应用

       乳腺恶性和良性病变的精确诊断对于后续治疗选择很重要。最近的研究[7, 8, 9, 10, 11, 12, 13, 14, 15]表明,影像组学分析可以为乳腺癌的诊断提供帮助,并且比常规检查具有更高的鉴别诊断能力。

       基于不同MRI序列的影像组学模型的判别能力存在差别,PERRE等[7]回顾性分析了117名女性患者的174个病变,从中提取了7个半定量增强参数和57个纹理特征,通过LASSO(least absolute shrinkage and selection operator)逻辑回归和交叉验证建立模型,得出基于高时间分辨率(high temporal resolution,HTR)动态对比增强(dynamic contrast enhancement, DCE)MRI序列的影像组学分析[受试者工作特征(receiver operating characteristic, ROC)曲线线下面积(area under the curve, AUC)为0.88]在区分乳腺良恶性病变方面的性能明显优于BI-RADS分类(AUC为0.83),并通过“恶性概率评分”的影像组学模型将乳腺MRI的假阳性数量减少了42%。BICKELHAUPT等[8]回顾性分析222名患者BI-RADS 4或5类的乳腺病灶,基于扩散峰度成像(diffusion kurtosis imaging, DKI)提取特征,通过随机森林算法开发影像组学模型,认为其能可靠区分恶性和良性乳腺病变(敏感度为98.0%,特异度为70.0%),研究发现基于DKI序列纹理或形态的高阶特征对鉴别诊断的意义不如简单的一阶统计特征。PÖTSCH等[9]通过研究自动化4D影像组学方法产生的A.I.(artificial intelligence)分类器,对329名女性患者的470个病变的DCE-MRI图像进行影像组学分析,实现了乳腺良恶性病变的准确区分(AUC为0.84)。

       目前,基于DCE-MRI[9, 10, 11, 12, 13]的影像组学特征被认为诊断效能最好,T2WI[13]、DKI[14]、扩散加权成像(diffusion-weighted imaging, DWI)[10]等序列及表观弥散系数(apparent diffusion coefficient, ADC)图[15]也可用于诊断,对比单序列影像组学模型,多参数MRI图像能更好地表征乳腺癌潜在的组织生物学信息,提高诊断效能[11]。但上述研究中选择的影像组学特征、特征筛选和分类方法都不同,不能体现某些特定特征或方法的优劣,迄今为止,尚无已发表的研究针对不同的影像组学特征、特征筛选及分类方法进行一一分析,并比较其优缺点,未来可针对不同组织病理学类型乳腺癌以此为方向进行科学研究。

2 影像组学在乳腺癌不同分子分型中的应用

       乳腺癌的治疗方案选择与其病理的分子亚型密切相关。活检或术后标本是确定分子亚型的主要方法,然而有限的活检组织无法代表肿瘤的整体信息,一定程度上可能会影响疗效评估。无创性预测乳腺癌不同分子亚型对于临床诊疗具有重要的意义。

       XIE等[16]基于134名浸润性导管癌患者的DCE和DWI图像提取纹理特征建立模型,发现其区分三阴性乳腺癌(triple-negative breast cancer, TNBC)与非TNBC的最高准确率达91.0%,然而该研究用于评估纹理特征的DWI的b值相对较低,需要在MRI体素内不相干运动(intravoxel incoherent motion, IVIM)或DKI中对具有更多b值的原始DWI进行进一步验证。LEITHNER等[17]基于143名经活检证实的乳腺癌患者的MRI增强图像提取特征,通过留一法交叉验证(leave-one-out cross-validation, LOO-CV)挑选最佳特征子集,发现其能评估乳腺癌受体状态和分子亚型,可区分Luminal A与Luminal B(准确率84.2%)、Luminal B与三阴性(准确率83.9%)、Luminal B与所有其他类型(准确率89.0%)。ZHOU等[18]回顾性研究了306名非特殊类型浸润性导管癌患者的脂肪抑制T2加权(T2-weighted fat suppression, T2-FS)和DCE-T1WI序列,通过支持向量机(support vector machine, SVM)挑选最佳特征子集,发现其预测乳腺癌患者的人表皮生长因子受体2(human epidermal growth factor receptor 2, HER2)阳性的AUC达0.86。

       NI等[19]指出直方图特征、GLCM和GLRLM在区分不同生物标志物方面具有很高的诊断性能。另外,部分研究[20, 21]仅在最大横断面上进行分割,可能无法完全代表全肿瘤异质性,肿瘤整体将提供更多更全面的肿瘤生物学信息。目前已发表的研究主要聚焦于肿瘤本身,忽略了对瘤周区域的分析,如淋巴管和血管生成及浸润,瘤周水肿及周围乳腺组织的免疫反应等,这些信息可能是潜在的预测标志物。

3 影像组学在乳腺癌淋巴结状态预测中的应用

       淋巴结状态是影响肿瘤局部复发和患者总生存率的重要因素之一。目前,主要依靠穿刺活检或手术确诊,但有创性操作会导致疼痛、血管及神经损伤等并发症。因此,急需一种术前无创性的方法来评估乳腺癌患者淋巴结是否转移。

       DONG等[22]纳入了146名乳腺癌患者T2-FS和DWI图像进行影像组学分析,结果阐明T2-FS、DWI在预测SLN转移中的AUC分别为0.77、0.79,联合二者之后,AUC达0.81。研究发现从DWI提取的纹理特征与SLN转移密切相关,例如Global、GLCM、GLRLM、GLSZM和NGTDM。ZHANG等[23]回顾性分析了230例早期浸润性乳腺癌患者病例,应用多变量逻辑回归来开发影像组学列线图,发现与MRI影像学特征相比,影像组学对于SLN重负荷的诊断效能更高(AUC:0.82 vs. 0.68)。另外,有些研究发现从原发肿瘤或(和)淋巴结中提取特征结合其他临床特征可以更好地预测淋巴结转移。HAN等[24]通过SVM对411例乳腺癌患者术前T1-DCE的第一期图像进行影像组学特征提取,利用逻辑回归开发列线图,发现其在预测腋窝淋巴结(axillary lymph node, ALN)转移及区分转移性淋巴结数量(≤2和>2)中均具有较好的诊断效能(AUC为0.78及0.79),在进一步联合影像学特征、MRI报告的淋巴结状态和临床淋巴结触诊的结果后,发现其对淋巴结转移预测的AUC可达0.87。朱永琪等[25]通过结合临床危险因素(如Ki-67、血小板淋巴细胞比值及MR淋巴结状态)而建立的联合模型预测ALN转移,证明了其能够弥补单纯影像组学模型预测效能的不足。朱芸等[26]基于术前MRI及钼靶影像学特征联合临床病理结果构建的列线图模型较好地预测了肿块型浸润性导管癌患者SLN转移情况(AUC 0.90)。YU等[27, 28]也在多中心研究中发现基于ALN和肿瘤的影像组学特征可以较好地预测早期乳腺癌ALN是否转移,进一步联合病理结果以及分子亚型后,其诊断效能明显提高。

       另外,部分研究[24,29, 30, 31]发现对于不同增强阶段图像,其影像组学特征的诊断效能也存在差异,这还需要更多的研究探讨。目前大多数研究只进行了内部验证且为手动分割感兴趣区,为了提高结果的可重复性,之后可优化深度学习算法用于半自动或自动分割以及进行多中心研究来验证模型的诊断效能。

4 影像组学在乳腺癌NAC疗效预测中的应用

       NAC是局部晚期乳腺癌的标准治疗方法,在一定程度上可使肿瘤达到病理完全缓解(pathological complete response, pCR),延长患者生存期,改善预后,故pCR可作为乳腺癌患者潜在的生存预测指标。然而,NAC的结果受限于肿瘤的异质性,导致pCR的定量预测仍具有一定的挑战性,影像组学的出现为乳腺癌NAC疗效预测带来了新的思路与突破。

       BRAMAN等[32]通过结合DCE-MRI中瘤内和瘤周的影像组学特征,预测NAC后乳腺癌的pCR的可能性。研究表明,瘤内均匀性的增加和瘤周熵值的降低可以较好地预测pCR。另外,该研究也发现对于不同亚型的乳腺癌,其预测pCR影像组学特征也存在差异,比如对于TN/HER2+亚型,瘤周区域的点样增强是预测pCR的最佳特征。SUTTON等[33]发现在浸润性乳腺癌患者中,结合NAC前和NAC后DCE-MRI影像组学特征及分子亚型能准确预测MRI上的pCR(AUC达0.88)。BITENCOURT等[34]发现在HER2过表达型乳腺癌患者中,通过建立联合影像组学特征及临床参数模型,可以较好地预测pCR(准确率为83.9%)。LIU等[35]的多中心研究发现多参数MRI(T2WI、DWI和DCE-T1WI)的影像组学特征结合病理结果的模型也可以较好地预测乳腺癌NAC的pCR(AUC达0.86)。

       目前,DCE-MRI被认为是在影像组学中评估对NAC治疗反应最常用的序列[36, 37],且有研究[37]发现与增强第一期的图像相比,联合多期DCE-MRI图像的影像组学特征对NAC的pCR的预测能力更好(AUC:0.69 vs. 0.84)。对基于DCE-MRI的影像组学特征的研究中,小波变换纹理特征、球形度和峰度等在预测NAC的pCR中结果较好[38, 39]。然而,也有研究[40]发现单纯联合使用T2WI及DWI的影像组学特征也可以较好地预测NAC的pCR。另外,HUANG等[41]提取多参数MRI(DCE-T1WI、T2-FS和ADC)影像组学特征,通过LASSO回归分析和十折交叉验证来降低特征维度,从而挑选出最佳特征子集,并结合临床病理结果建立模型,用于早期预测乳腺癌NAC后的肿瘤缩小模式,以评估化疗后保乳手术的可行性(AUC达0.94)。然而,也有部分研究[42]表明与临床模型相比,影像组学特征分析在预测乳腺癌患者NAC的pCR方面没有附加价值。因此,需要进行前瞻性研究来预先选择可再现的特征,以便准确评估影像组学的潜力。目前多数研究仅纳入治疗前的MRI图像,而治疗时多层次的影像组学特征和不同阶段的特征可为提高模型性能提供重要的补充信息。

5 影像组学在乳腺癌预后预测中的应用

       目前,越来越多研究显示影像组学在乳腺癌预后预测中具有重要作用。CHITALIA等[43]通过提取95名浸润性乳腺癌患者治疗前DCE-MRI图像的影像组学特征,发现其有助于预测10年无复发生存率(C指数为0.73)。LEE等[44]前瞻性地对288名浸润性乳腺癌患者的乳腺DCE-MRI图像进行了纹理和灌注成像分析,发现联合MRI肿瘤异质性和血管生成特性的影像组学特征,再通过随机森林算法挑选最佳特征子集,预测乳腺癌预后的AUC达0.75,该研究发现熵和血管外细胞外间隙容积分数(extravascular extracellular space distribute volume per unit tissue volume, Ve)是预测生物标志物和分子亚型最重要的纹理参数及灌注参数。同时,还发现具有不良预后因素的分子亚型[如雌激素受体(estrogen receptor, ER)阴性、HER2阳性、高级别Ki-67或非Luminal亚型]的Ve值较低。PARK等[45]通过将特定的影像学特征与相关的临床因素相结合,构建综合性的预后Cox回归模型,较好地估计了294名浸润性乳腺癌患者的无病生存率(C指数为0.76),研究还发现基于GLCM、GLSZM的纹理特征比基于直方图的特征更擅长捕获纹理信息,而T2WI比CE-T1WI能更好地表现出肿瘤异质性。

       有研究[46, 47, 48]表明DCE-MRI是目前评估乳腺癌预后最可靠的技术,T2WI[45, 47]可作为补充序列之一。不少研究展示出与预后相关表现的多方向多角度的思考,如对于血管生成[49, 50]、淋巴血管浸润(lymphatic vascular infiltration, LVI)[51]、肿瘤周围脂肪含量[52]、肿瘤微环境中免疫细胞和基质细胞的浸润程度[53]等的研究,均取得了较为满意的结果,研究还发现GLCM和GLRLM特征与乳腺癌中的微血管密度最显著相关[49],GLSZM和灰度方差(gray-level variance, GLV)是预测LVI状态的两个有价值的影像组学特征[51]。因此,今后的研究可发掘更多与预后相关的影像组学研究方向,以提供更有价值的预后信息。

6 影像组学在乳腺癌其他方面的应用

       乳腺癌组织学分级的术前预测可为不同的临床治疗提供参考,WAUGH等[54]经过影像组学分析得出乳腺小叶癌和导管癌的熵特征显著不同(P<0.001)。但该研究仅包含大于8 mm的病变,限制了适用群体。Ki-67指数反映了肿瘤的侵袭性,明洁等[55]的研究基于术前DCE-MRI影像组学模型预测Ki-67表达状态,指出瘤周特征的加入能够提高模型的诊断效能(AUC达0.86)。也有研究表明基于ADC图[56]和T2WI图像[57]的影像组学分析对于Ki-67状态的判断具有巨大潜力。最新研究基于DCE-MRI瘤内和瘤周特征的影像组学模型可在术前有效预测浸润性乳腺癌导管内成分(AUC达0.82)[58],这将有助于为乳腺癌患者制订个性化诊疗方案。然而,目前关于乳腺癌组织学分级等研究的文献较少,尚不能得出较为合理且优质的结论,但可能为之后的科研方向提供了新的思路。

7 小结与展望

       综上所述,影像组学在鉴别乳腺良恶性肿瘤、区分乳腺癌不同分子亚型,预测腋窝及SLN状态、对NAC的疗效评估及预后预测等方面均取得了明显进展。然而,在某些临床实践中的应用仍受到一定程度的阻碍。首先,由于不同机构的设备及软件不同,其获取影像信息的流程和标准也各不相同,这会使模型的稳定性降低,从而降低结果的可重复性;其次,放射科医师不熟悉影像组学模型的应用以及不同医院间数据共享空间上的限制;此外,影像组学特征的生物验证意义尚不明确,临床推广应用受限;最后,大多数影像组学研究是回顾性的单中心研究,规模相对较小。因此,接下来应该进行更大规模的前瞻性、多中心研究以及数据和方案标准化,也可以将机器学习应用于影像组学以提取关键参数并提高结果的可重复性,多模态、多组学的研究方法也将成为未来的发展趋势。乳腺影像组学分析是乳腺影像未来的发展方向之一,有望成为一种辅助临床决策的有效工具。

[1]
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
[2]
DERCLE L, AMMARI S, BATESON M, et al. Limits of radiomic-based entropy as a surrogate of tumor heterogeneity: ROI-area, acquisition protocol and tissue site exert substantial influence[J/OL]. Sci Rep, 2017, 7(1): 7952 [2022-09-30]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5554130/. DOI: 10.1038/s41598-017-08310-5.
[3]
PRUD'HOMME C, DESCHAMPS F, ALLORANT A, et al. Image-guided tumour biopsies in a prospective molecular triage study (MOSCATO-01): what are the real risks?[J]. Eur J Cancer, 2018, 103: 108-119. DOI: 10.1016/j.ejca.2018.08.003.
[4]
PESAPANE F, SUTER M B, ROTILI A, et al. Will traditional biopsy be substituted by radiomics and liquid biopsy for breast cancer diagnosis and characterisation?[J/OL]. Med Oncol, 2020, 37(4): 29 [2022-09-30]. https://link.springer.com/article/10.1007/s12032-020-01353-1. DOI: 10.1007/s12032-020-01353-1.
[5]
GILLIES R J, KINAHAN P E, HRICAK H. Radiomics: images are more than pictures, they are data[J]. Radiology, 2016, 278(2): 563-577. DOI: 10.1148/radiol.2015151169.
[6]
LEE G, LEE H Y, PARK H, et al. Radiomics and its emerging role in lung cancer research, imaging biomarkers and clinical management: state of the art[J]. Eur J Radiol, 2017, 86: 297-307. DOI: 10.1016/j.ejrad.2016.09.005.
[7]
PERRE S V, DURON L, MILON A, et al. Radiomic analysis of HTR-DCE MR sequences improves diagnostic performance compared to BI-RADS analysis of breast MR lesions[J]. Eur Radiol, 2021, 31(7): 4848-4859. DOI: 10.1007/s00330-020-07519-9.
[8]
BICKELHAUPT S, JAEGER P F, LAUN F B, et al. Radiomics based on adapted diffusion kurtosis imaging helps to clarify most mammographic findings suspicious for cancer[J]. Radiology, 2018, 287(3): 761-770. DOI: 10.1148/radiol.2017170273.
[9]
PÖTSCH N, DIETZEL M, KAPETAS P, et al. An A.I. classifier derived from 4D radiomics of dynamic contrast-enhanced breast MRI data: potential to avoid unnecessary breast biopsies[J]. Eur Radiol, 2021, 31(8): 5866-5876. DOI: 10.1007/s00330-021-07787-z.
[10]
DAIMIEL NARANJO I, GIBBS P, REINER J S, et al. Radiomics and machine learning with multiparametric breast MRI for improved diagnostic accuracy in breast cancer diagnosis[J/OL]. Diagnostics (Basel), 2021, 11(6): 919 [2022-09-30]. https://www.mdpi.com/2075-4418/11/6/919. DOI: 10.3390/diagnostics11060919.
[11]
PAREKH V S, JACOBS M A. Multiparametric radiomics methods for breast cancer tissue characterization using radiological imaging[J]. Breast Cancer Res Treat, 2020, 180(2): 407-421. DOI: 10.1007/s10549-020-05533-5.
[12]
PAREKH V S, JACOBS M A. Integrated radiomic framework for breast cancer and tumor biology using advanced machine learning and multiparametric MRI[J/OL]. NPJ Breast Cancer, 2017, 3: 43 [2022-09-30]. https://www.nature.com/articles/s41523-017-0045-3. DOI: 10.1038/s41523-017-0045-3.
[13]
HAO W, GONG J, WANG S P, et al. Application of MRI radiomics-based machine learning model to improve contralateral BI-RADS 4 lesion assessment[J/OL]. Front Oncol, 2020, 10: 531476 [2022-09-30]. https://www.frontiersin.org/articles/10.3389/fonc.2020.531476/full. DOI: 10.3389/fonc.2020.531476.
[14]
ZHANG Q, PENG Y S, LIU W, et al. Radiomics based on multimodal MRI for the differential diagnosis of benign and malignant breast lesions[J]. J Magn Reson Imaging, 2020, 52(2): 596-607. DOI: 10.1002/jmri.27098.
[15]
HU B, XU K, ZHANG Z, et al. A radiomic nomogram based on an apparent diffusion coefficient map for differential diagnosis of suspicious breast findings[J]. Chung Kuo Yen Cheng Yen Chiu, 2018, 30(4): 432-438. DOI: 10.21147/j.issn.1000-9604.2018.04.06.
[16]
XIE T W, WANG Z, ZHAO Q F, et al. Machine learning-based analysis of MR multiparametric radiomics for the subtype classification of breast cancer[J/OL]. Front Oncol, 2019, 9: 505 [2022-09-30]. https://www.frontiersin.org/articles/10.3389/fonc.2019.00505/full. DOI: 10.3389/fonc.2019.00505.
[17]
LEITHNER D, HORVAT J V, MARINO M A, et al. Radiomic signatures with contrast-enhanced magnetic resonance imaging for the assessment of breast cancer receptor status and molecular subtypes: initial results[J/OL]. Breast Cancer Res, 2019, 21(1): 106 [2022-09-30]. https://breast-cancer-research.biomedcentral.com/articles/10.1186/s13058-019-1187-z. DOI: 10.1186/s13058-019-1187-z.
[18]
ZHOU J, TAN H N, LI W, et al. Radiomics signatures based on multiparametric MRI for the preoperative prediction of the HER2 status of patients with breast cancer[J]. Acad Radiol, 2021, 28(10): 1352-1360. DOI: 10.1016/j.acra.2020.05.040.
[19]
NI M, ZHOU X M, LIU J W, et al. Prediction of the clinicopathological subtypes of breast cancer using a fisher discriminant analysis model based on radiomic features of diffusion-weighted MRI[J/OL]. BMC Cancer, 2020, 20(1): 1073 [2022-09-30]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7654148/. DOI: 10.1186/s12885-020-07557-y.
[20]
LEITHNER D, MAYERHOEFER M E, MARTINEZ D F, et al. Non-invasive assessment of breast cancer molecular subtypes with multiparametric magnetic resonance imaging radiomics[J/OL]. J Clin Med, 2020, 9(6): 1853 [2022-09-30]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7356091/. DOI: 10.3390/jcm9061853.
[21]
LI C L, SONG L R, YIN J D. Intratumoral and peritumoral radiomics based on functional parametric maps from breast DCE-MRI for prediction of HER-2 and ki-67 status[J]. J Magn Reson Imaging, 2021, 54(3): 703-714. DOI: 10.1002/jmri.27651.
[22]
DONG Y H, FENG Q J, YANG W, et al. Preoperative prediction of sentinel lymph node metastasis in breast cancer based on radiomics of T2-weighted fat-suppression and diffusion-weighted MRI[J]. Eur Radiol, 2018, 28(2): 582-591. DOI: 10.1007/s00330-017-5005-7.
[23]
ZHANG X, YANG Z H, CUI W J, et al. Preoperative prediction of axillary sentinel lymph node burden with multiparametric MRI-based radiomics nomogram in early-stage breast cancer[J]. Eur Radiol, 2021, 31(8): 5924-5939. DOI: 10.1007/s00330-020-07674-z.
[24]
HAN L, ZHU Y B, LIU Z Y, et al. Radiomic nomogram for prediction of axillary lymph node metastasis in breast cancer[J]. Eur Radiol, 2019, 29(7): 3820-3829. DOI: 10.1007/s00330-018-5981-2.
[25]
朱永琪, 纪华, 朱彦芳, 等. 术前MRI影像组学列线图对乳腺癌腋窝淋巴结转移的预测价值[J]. 磁共振成像, 2022, 13(5): 52-58. DOI: 10.12015/issn.1674-8034.2022.05.010.
ZHU Y Q, JI H, ZHU Y F, et al. Predictive value of preoperative MRI-based nomogram for axillary lymph node metastasis in breast cancer[J]. Chin J Magn Reson Imaging, 2022, 13(5): 52-58. DOI: 10.12015/issn.1674-8034.2022.05.010.
[26]
朱芸, 张书海, 王小雷, 等. 基于MRI、钼靶和病理的列线图预测肿块型乳腺浸润性导管癌前哨淋巴结转移的价值[J]. 磁共振成像, 2022, 13(5): 45-51. DOI: 10.12015/issn.1674-8034.2022.05.009.
ZHU Y, ZHANG S H, WANG X L, et al. Value of a nomogram based on MRI, mammography and pathology for predicting sentinel lymph node metastasis of mass-type breast invasive ductal carcinoma[J]. Chin J Magn Reson Imaging, 2022, 13(5): 45-51. DOI: 10.12015/issn.1674-8034.2022.05.009.
[27]
YU Y F, HE Z F, OUYANG J, et al. Magnetic resonance imaging radiomics predicts preoperative axillary lymph node metastasis to support surgical decisions and is associated with tumor microenvironment in invasive breast cancer: a machine learning, multicenter study[J/OL]. EBioMedicine, 2021, 69: 103460 [2022-09-30]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8261009/. DOI: 10.1016/j.ebiom.2021.103460.
[28]
YU Y F, TAN Y J, XIE C M, et al. Development and validation of a preoperative magnetic resonance imaging radiomics-based signature to predict axillary lymph node metastasis and disease-free survival in patients with early-stage breast cancer[J/OL]. JAMA Netw Open, 2020, 3(12): e2028086 [2022-09-30]. https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2773816. DOI: 10.1001/jamanetworkopen.2020.28086.
[29]
LIU J, SUN D, CHEN L L, et al. Radiomics analysis of dynamic contrast-enhanced magnetic resonance imaging for the prediction of sentinel lymph node metastasis in breast cancer[J/OL]. Front Oncol, 2019, 9: 980 [2022-09-30]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6778833/. DOI: 10.3389/fonc.2019.00980.
[30]
SANTUCCI D, FAIELLA E, CORDELLI E, et al. 3T MRI-radiomic approach to predict for lymph node status in breast cancer patients[J/OL]. Cancers, 2021, 13(9): 2228 [2022-09-30]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8124168/. DOI: 10.3390/cancers13092228.
[31]
CHAI R M, MA H, XU M J, et al. Differentiating axillary lymph node metastasis in invasive breast cancer patients: a comparison of radiomic signatures from multiparametric breast MR sequences[J]. J Magn Reson Imaging, 2019, 50(4): 1125-1132. DOI: 10.1002/jmri.26701.
[32]
BRAMAN N M, ETESAMI M, PRASANNA P, et al. Intratumoral and peritumoral radiomics for the pretreatment prediction of pathological complete response to neoadjuvant chemotherapy based on breast DCE-MRI[J/OL]. Breast Cancer Res, 2017, 19(1): 57 [2022-09-30]. https://breast-cancer-research.biomedcentral.com/articles/10.1186/s13058-017-0846-1. DOI: 10.1186/s13058-017-0846-1.
[33]
SUTTON E J, ONISHI N, FEHR D A, et al. A machine learning model that classifies breast cancer pathologic complete response on MRI post-neoadjuvant chemotherapy[J/OL]. Breast Cancer Res, 2020, 22(1): 57 [2022-09-30]. https://breast-cancer-research.biomedcentral.com/articles/10.1186/s13058-020-01291-w. DOI: 10.1186/s13058-020-01291-w.
[34]
BITENCOURT A G V, GIBBS P, ROSSI SACCARELLI C, et al. MRI-based machine learning radiomics can predict HER2 expression level and pathologic response after neoadjuvant therapy in HER2 overexpressing breast cancer[J/OL]. EBioMedicine, 2020, 61: 103042 [2022-09-30]. https://www.thelancet.com/journals/ebiom/article/PIIS2352-3964(20)30418-7/fulltext. DOI: 10.1016/j.ebiom.2020.103042.
[35]
LIU Z Y, LI Z L, QU J R, et al. Radiomics of multiparametric MRI for pretreatment prediction of pathologic complete response to neoadjuvant chemotherapy in breast cancer: a multicenter study[J]. Clin Cancer Res, 2019, 25(12): 3538-3547. DOI: 10.1158/1078-0432.CCR-18-3190.
[36]
FAN M, CHEN H, YOU C, et al. Radiomics of tumor heterogeneity in longitudinal dynamic contrast-enhanced magnetic resonance imaging for predicting response to neoadjuvant chemotherapy in breast cancer[J/OL]. Front Mol Biosci, 2021, 8: 622219 [2022-09-30]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8044916/. DOI: 10.3389/fmolb.2021.622219.
[37]
LI Q, XIAO Q, LI J W, et al. Value of machine learning with multiphases CE-MRI radiomics for early prediction of pathological complete response to neoadjuvant therapy in HER2-positive invasive breast cancer[J]. Cancer Manag Res, 2021, 13: 5053-5062. DOI: 10.2147/CMAR.S304547.
[38]
ZHOU J L, LU J H, GAO C, et al. Predicting the response to neoadjuvant chemotherapy for breast cancer: wavelet transforming radiomics in MRI[J/OL]. BMC Cancer, 2020, 20(1): 100 [2022-09-30]. https://bmccancer.biomedcentral.com/articles/10.1186/s12885-020-6523-2. DOI: 10.1186/s12885-020-6523-2.
[39]
MONTEMEZZI S, BENETTI G, BISIGHIN M V, et al. 3T DCE-MRI radiomics improves predictive models of complete response to neoadjuvant chemotherapy in breast cancer[J/OL]. Front Oncol, 2021, 11: 630780 [2022-09-30]. https://www.frontiersin.org/articles/10.3389/fonc.2021.630780/full. DOI: 10.3389/fonc.2021.630780.
[40]
CHEN S J, SHU Z Y, LI Y F, et al. Machine learning-based radiomics nomogram using magnetic resonance images for prediction of neoadjuvant chemotherapy efficacy in breast cancer patients[J/OL]. Front Oncol, 2020, 10: 1410 [2022-09-30]. https://www.frontiersin.org/articles/10.3389/fonc.2020.01410/full. DOI: 10.3389/fonc.2020.01410.
[41]
HUANG Y H, CHEN W B, ZHANG X L, et al. Prediction of tumor shrinkage pattern to neoadjuvant chemotherapy using a multiparametric MRI-based machine learning model in patients with breast cancer[J/OL]. Front Bioeng Biotechnol, 2021, 9: 662749 [2022-09-30]. https://www.frontiersin.org/articles/10.3389/fbioe.2021.662749/full. DOI: 10.3389/fbioe.2021.662749.
[42]
GRANZIER R W Y, IBRAHIM A, PRIMAKOV S P, et al. MRI-based radiomics analysis for the pretreatment prediction of pathologic complete tumor response to neoadjuvant systemic therapy in breast cancer patients: a multicenter study[J/OL]. Cancers, 2021, 13(10): 2447 [2022-09-30]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8157878/. DOI: 10.3390/cancers13102447.
[43]
CHITALIA R D, ROWLAND J, MCDONALD E S, et al. Imaging phenotypes of breast cancer heterogeneity in preoperative breast dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) scans predict 10-year recurrence[J]. Clin Cancer Res, 2020, 26(4): 862-869. DOI: 10.1158/1078-0432.CCR-18-4067.
[44]
LEE J Y, LEE K S, SEO B K, et al. Radiomic machine learning for predicting prognostic biomarkers and molecular subtypes of breast cancer using tumor heterogeneity and angiogenesis properties on MRI[J]. Eur Radiol, 2022, 32(1): 650-660. DOI: 10.1007/s00330-021-08146-8.
[45]
PARK H, LIM Y, KO E S, et al. Radiomics signature on magnetic resonance imaging: association with disease-free survival in patients with invasive breast cancer[J]. Clin Cancer Res, 2018, 24(19): 4705-4714. DOI: 10.1158/1078-0432.CCR-17-3783.
[46]
LI Q, XIAO Q, LI J W, et al. MRI-based radiomic signature as a prognostic biomarker for HER2-positive invasive breast cancer treated with NAC[J]. Cancer Manag Res, 2020, 12: 10603-10613. DOI: 10.2147/CMAR.S271876.
[47]
KIM S, KIM M J, KIM E K, et al. MRI radiomic features: association with disease-free survival in patients with triple-negative breast cancer[J/OL]. Sci Rep, 2020, 10(1): 3750 [2022-09-30]. https://www.nature.com/articles/s41598-020-60822-9. DOI: 10.1038/s41598-020-60822-9.
[48]
MAZUROWSKI M A, SAHA A, HAROWICZ M R, et al. Association of distant recurrence-free survival with algorithmically extracted MRI characteristics in breast cancer[J/OL]. J Magn Reson Imaging, 2019, 49(7): e231-e240 [2022-09-30]. https://onlinelibrary.wiley.com/doi/10.1002/jmri.26648. DOI: 10.1002/jmri.26648.
[49]
XIAO J, RAHBAR H, HIPPE D S, et al. Dynamic contrast-enhanced breast MRI features correlate with invasive breast cancer angiogenesis[J/OL]. NPJ Breast Cancer, 2021, 7(1): 42 [2022-09-30]. https://www.nature.com/articles/s41523-021-00247-3. DOI: 10.1038/s41523-021-00247-3.
[50]
DIETZEL M, SCHULZ-WENDTLAND R, ELLMANN S, et al. Automated volumetric radiomic analysis of breast cancer vascularization improves survival prediction in primary breast cancer[J/OL]. Sci Rep, 2020, 10(1): 3664 [2022-09-30]. https://www.nature.com/articles/s41598-020-60393-9. DOI: 10.1038/s41598-020-60393-9.
[51]
LIU Z S, FENG B, LI C L, et al. Preoperative prediction of lymphovascular invasion in invasive breast cancer with dynamic contrast-enhanced-MRI-based radiomics[J]. J Magn Reson Imaging, 2019, 50(3): 847-857. DOI: 10.1002/jmri.26688.
[52]
OBEID J P, STOYANOVA R, KWON D, et al. Multiparametric evaluation of preoperative MRI in early stage breast cancer: prognostic impact of peri-tumoral fat[J]. Clin Transl Oncol, 2017, 19(2): 211-218. DOI: 10.1007/s12094-016-1526-9.
[53]
AREFAN D, HAUSLER R M, SUMKIN J H, et al. Predicting cell invasion in breast tumor microenvironment from radiological imaging phenotypes[J/OL]. BMC Cancer, 2021, 21(1): 370 [2022-09-30]. https://link.springer.com/article/10.1186/s12885-021-08122-x. DOI: 10.1186/s12885-021-08122-x.
[54]
WAUGH S A, PURDIE C A, JORDAN L B, et al. Magnetic resonance imaging texture analysis classification of primary breast cancer[J]. Eur Radiol, 2016, 26(2): 322-330. DOI: 10.1007/s00330-015-3845-6.
[55]
明洁, 陈莹, 刘莹, 等. 基于DCE-MRI瘤内联合瘤周影像组学模型术前预测乳腺癌Ki-67表达状态的价值[J]. 磁共振成像, 2022, 13(10): 132-137, 149. DOI: 10.12015/issn.1674-8034.2022.10.020.
MING J, CHEN Y, LIU Y, et al. Value of preoperative prediction of Ki-67 expression in breast cancer based on DCE-MRI intratumoral combined with peritumoral radiomics model[J]. Chin J Magn Reson Imaging, 2022, 13(10): 132-137, 149. DOI: 10.12015/issn.1674-8034.2022.10.020.
[56]
KAYADIBI Y, KOCAK B, UCAR N, et al. Radioproteomics in breast cancer: prediction of ki-67 expression with MRI-based radiomic models[J]. Acad Radiol, 2022, 29(Suppl 1): S116-S125. DOI: 10.1016/j.acra.2021.02.001.
[57]
LIANG C S, CHENG Z X, HUANG Y Q, et al. An MRI-based radiomics classifier for preoperative prediction of ki-67 status in breast cancer[J]. Acad Radiol, 2018, 25(9): 1111-1117. DOI: 10.1016/j.acra.2018.01.006.
[58]
XU H, LIU J K, CHEN Z, et al. Intratumoral and peritumoral radiomics based on dynamic contrast-enhanced MRI for preoperative prediction of intraductal component in invasive breast cancer[J]. Eur Radiol, 2022, 32(7): 4845-4856. DOI: 10.1007/s00330-022-08539-3.

上一篇 乳腺癌血管生成的MRI影像学评价研究进展
下一篇 磁共振成像在乳腺癌诊断及预后评估中的应用现状及研究进展
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2