分享:
分享到微信朋友圈
X
临床研究
高分辨率压缩感知TOF-MRA在烟雾病分期及出血相关血管评估中的临床价值
李青 苏春秋 武鹏飞 吴伟 鲁珊珊

Cite this article as: LI Q, SU C Q, WU P F, et al. Clinical value of high-resolution compressed sensing TOF-MRA in assessing Suzuki classification and the dilatation of hemorrhage related vascular in patients with moyamoya disease[J]. Chin J Magn Reson Imaging, 2023, 14(4): 29-33.本文引用格式:李青, 苏春秋, 武鹏飞, 等. 高分辨率压缩感知TOF-MRA在烟雾病分期及出血相关血管评估中的临床价值[J]. 磁共振成像, 2023, 14(4): 29-33. DOI:10.12015/issn.1674-8034.2023.04.006.


[摘要] 目的 探讨高分辨率压缩感知(compressed sensing, CS)时间飞跃法磁共振血管造影(time-of-fight magnetic resonance angiography, TOF-MRA)在烟雾病(moyamoya disease, MMD)分期及出血相关血管评估中的应用价值。材料与方法 回顾性分析同时行CS TOF-MRA和CT血管成像(computed tomography angiography, CTA)的MMD患者资料21例,两次检查时间间隔不超过2周。CS TOF-MRA扫描时间5 min 4 s,重建体素大小0.4 mm×0.4 mm×0.4 mm。两名放射科医生分别在CS TOF-MRA和CTA上对Suzuki分期、烟雾状血管(moyamoya vessel, MMV)、脉络膜前动脉(anterior choroidal artery, AChA)及后交通动脉(posterior communicating artery, PComA)的显示能力进行评价,并以单侧大脑半球为单位对AChA、PComA有无扩张进行分级评估。采用配对样本Wilcoxon秩和检验,将CS TOF-MRA及CTA评估结果进行对比分析。结果 研究共纳入37个大脑半球(5例单侧MMD,16例双侧MMD)。CS TOF-MRA对Suzuki分期评价能力与CTA相当(Z=-1.000,P>0.05),对MMV、AChA及PComA的显示能力均优于CTA(P值均<0.05)。CS TOF-MRA对AChA、PComA扩张分级评估能力与CTA相当(P值均<0.05)。结论 在临床合理的扫描时间内,高分辨率CS TOF-MRA序列对MMD出血相关血管的显示优于CTA,Suzuki分期和血管扩张分级评估与之相当,可作为MMD患者随访复查优先选择的影像学检查方法,具有较高的临床应用价值。
[Abstract] Objective To explore the applied value of high-resolution compressed sensing (CS) time-of-fight magnetic resonance angiography (TOF-MRA) in assessing Suzuki classification and the dilatation of hemorrhage related vascular in patients with moyamoya disease (MMD).Materials and Methods A retrospective analysis of twenty-one receivers who underwent both CS TOF-MRA and computed tomography angiography (CTA) within 2 weeks. The scan time of CS TOF-MRA was 5 min 4 s, with a reconstructed resolution of 0.4 mm×0.4 mm×0.4 mm. Visualization of Suzuki classification, moyamoya vessel (MMV), anterior choroidal artery (AChA), and posterior communicating artery (PComA) were independently ranked by two neuroradiologists on CS TOF-MRA and CTA, respectively. The unilateral cerebral hemisphere as a unit, the dilatation of AChA and PComA were graded using both CS TOF-MRA and CTA. Wilcoxon rank sum test was used to compare the evaluation results of CS TOF-MRA and CTA.Results The evaluation ability of Suzuki classification, CS TOF-MRA was equivalent to CTA (Z=-1.000, P>0.05). The MMV, AChA and PComA were better visualized on CS TOF-MRA than CTA (both P<0.05). Thirty-seven hemisphere were enrolled (5 cases of unilateral MMD and 16 cases of bilateral MMD), the dilatation of AChA and PComA, were comparable to CTA (both P<0.05).Conclusions Within a clinically reasonable time, high-resolution CS TOF-MRA outperforms CTA for visualization of hemorrhage related vascular and is equivalent to CTA for Suzuki classification and the dilatation of hemorrhage related vascular in MMD patients. High-resolution CS TOF-MRA can be used as a priority imaging examination for follow-up review of MMD patients, and has well applied value in clinical practice.
[关键词] 脑血管疾病;烟雾病;出血;高分辨率压缩感知技术;磁共振血管造影术;磁共振成像
[Keywords] cerebrovascular disorders;moyamoya disease;intracranial hemorrhage;high-resolution compressed sensing;magnetic resonance angiography;magnetic resonance imaging

李青 1   苏春秋 1   武鹏飞 1   吴伟 2   鲁珊珊 1*  

1 南京医科大学第一附属医院放射科,南京 210029

2 南京医科大学第一附属医院神经外科,南京 210029

通信作者:鲁珊珊,E-mail:lushan1118@163.com

作者贡献声明:鲁珊珊设计本研究的方案,对论文内容的重要方面进行了关键修改;李青起草和撰写论文,参与数据的获取、分析和解释;苏春秋、武鹏飞、吴伟分析和解释本研究的数据,对论文的部分内容进行了修改和指导;鲁珊珊获得国家自然科学基金资助。全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 国家自然科学基金 82171907
收稿日期:2022-11-18
接受日期:2023-04-14
中图分类号:R445.2  R743 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2023.04.006
本文引用格式:李青, 苏春秋, 武鹏飞, 等. 高分辨率压缩感知TOF-MRA在烟雾病分期及出血相关血管评估中的临床价值[J]. 磁共振成像, 2023, 14(4): 29-33. DOI:10.12015/issn.1674-8034.2023.04.006.

0 前言

       烟雾病(moyamoya disease, MMD)是一种以双侧颈内动脉末端、大脑前动脉及大脑中动脉主干进行性狭窄或闭塞并伴有颅底异常网状血管形成的颅内血管性疾病,其原因不明,分为出血型和缺血型[1, 2, 3, 4]。MMD成人出血症状发生率高达55.9%[5],死亡率达6.8%~28.6%[6]。Suzuki分期反映了MMD患者颅内烟雾状血管(moyamoya vessel, MMV)的发展过程,分期越高,脑血流动力学越紊乱,脑血管事件越易发生[7, 8]。在MMD早期,新生的MMV是出血的主要原因;随着病情的进展,脉络膜前动脉(anterior choroidal artery, AChA)和(或)后交通动脉(posterior communicating artery, PComA)的扩张是出血的重要原因[9, 10, 11]。对AChA、PComA及MMV的准确评估对MMD患者分期及出血风险预测意义重大[12, 13, 14]

       数字减影血管造影(digital subtraction angiograph, DSA)是诊断MMD的金标准,但存在费用高、有创和有电离辐射等缺点[15]。头颅CT血管成像(computed tomography angiography, CTA)扫描速度快,但需注射对比剂且有电离辐射危害,颅底MMV的显示易受颅骨干扰[16]。磁共振血管成像(magnetic resonance angiography, MRA)在MMD诊断中具有较高的准确度和特异度,目前已成为MMD诊断及分期的常用无创方法[17]。但受扫描时间的限制,常规时间飞跃法磁共振血管造影(time-of-fight magnetic resonance angiography, TOF-MRA)图像分辨率有限,对细小动脉的显示较差,如何缩短扫描时间的同时获得高分辨率的MRA图像,已显得非常必要。近年来压缩感知(compressed sensing, CS)技术在磁共振快速成像领域的研究迅猛发展[18, 19]。我们既往研究发现,CS技术可明显缩短TOF-MRA扫描时间的同时获得更好的图像质量,且有利于细小血管的显示[20]。高分辨率CS TOF-MRA对MMD术后搭桥血管的评估优于CTA已被证实[21],但尚未见其在MMD分期和出血相关血管中的报道。为了弥补该领域的空白,本研究旨在探讨高分辨率CS TOF-MRA在MMD患者分期及出血相关血管(MMV、AChA及PComA)评估中的临床价值,为其无创性评估提供新方法。

1 材料和方法

1.1 一般资料

       本研究回顾性分析2018年6月至2021年11月间在南京医科大学第一附属医院同时行CS TOF-MRA和CTA检查的MMD患者资料。纳入标准:(1)同时行CS TOF-MRA与CTA检查,检查时间间隔不超过2周;(2)图像无明显运动伪影;(3)临床资料完整。排除标准:CTA和MRA检查间隔期间患者接受了手术治疗。本研究遵守《赫尔辛基宣言》,并经我院伦理委员会批准,免除受试者知情同意,批准文号2021-SR-043。

1.2 扫描方法

       CS TOF-MRA采用3.0 T磁共振扫描仪(Siemens Skyra,西门子,德国)、20通道头颈联合线圈进行扫描。扫描体位采用仰卧位,头先进,定位中心在眉弓处,扫描范围从颈内动脉C5段至大脑中动脉的M4段。扫描参数:FOV 200 mm×200 mm,重复时间 21 ms,回波时间3.49 ms,翻转角18°,层厚0.4 mm,矩阵368×334,重建体素大小0.4 mm×0.4 mm×0.4 mm,CS加速因子为5,扫描时间5 min 4 s。数据重建使用改进的快速迭代收缩阈值算法进行10次迭代重构。扫描后自动重建轴位、冠状位和矢状位15 mm薄层最大密度投影(maximum intensity projection, MIP)图像。

       CTA采用256排宝石CT扫描仪(Revolution,GE,美国),扫描体位采用仰卧位,头先进,定位线与眼眶平行,扫描范围从颅底到颅顶。扫描参数:FOV直径为25 cm,管电压120 kV,管电流320 mA,矩阵512×512,球管旋转时间0.28 s,螺距0.992,准直0.625 mm×32。原始数据无间隔重建层厚为0.625 mm,重建体素为0.488 mm×0.488 mm×0.625 mm。注射方案为对比剂团注法,对比剂使用碘普罗胺(优维显,370 mg/mL,德国拜耳),用量为1~1.2 mL/kg,注射速率5 mL/s,扫描后对图像进行MIP重建。

1.3 图像分析

       由两名放射科医生(第1名医师从事中枢神经系统影像诊断工作6年,住院医师;第2名医师从事中枢神经系统影像诊断工作4年,主治医师)在工作站Vue PACS(生产厂家:Carestream,版本:12.1.5.1156)上对CS TOF-MRA和CTA的原始图像及MIP图像进行独立评估,完成CS TOF-MRA评估1周后对CTA进行评估。两者对图像分析意见不一致时由另一位高年资放射科医生(从事中枢神经系统影像诊断工作11年,副主任医师)协助达成共识。评估内容及标准如下:

       (1)Suzuki分期情况:Ⅰ期,颈内动脉末端狭窄;Ⅱ期,颅底MMV形成;Ⅲ期,MMV增多(颈内动脉狭窄程度增加,累及大脑前、中动脉);Ⅳ期,MMV开始减少(大脑后动脉闭塞,颅外侧支循环开始出现);Ⅴ期,Ⅳ期进一步发展;Ⅵ期,MMV消失(颈内动脉及其分支完全闭塞)[22]。(2)出血相关血管(MMV、AChA及PComA)显示质量评估:0分,无法显示;1分,几乎不可见(血管模糊,无法用于诊断);2分,可见(血管可见,足以诊断,但信号、密度较弱);3分,清晰可见(血管清晰连续可见,对比度好)。(3)AChA扩张分级:0级,AChA无扩张、无延伸;1级,AChA扩张并延伸至侧脑室水平以下;2级,AChA扩张并延伸超过侧脑室水平[23]。(4)PComA扩张分级:0级,阴性(即PComA不可见);1级,正常PComA;2级,PComA扩张不伴远端延伸;3级,PComA扩张伴有远端延伸[24]

1.4 统计学分析

       采用SPSS 24.0软件进行统计学分析。采用Shapiro-Wilk检验计量资料是否符合正态分布,符合即用均数±标准差表示,否则用中位数(25%分位数,75%分位数)表示;计数资料用频数及百分比表示。两名阅片者对资料评价的一致性采用Kappa检验,<0.40为一致性较差,>0.60为一致性较好。采用配对样本Wilcoxon秩和检验,将CS TOF-MRA及CTA评估结果进行对比分析,P<0.05为差异有统计学意义。

2 结果

2.1 临床资料

       共纳入21例MMD患者,其中男10例,女11例,年龄12~59(44.38±12.10)岁。5例为单侧MMD,16例为双侧MMD。临床表现为:缺血性卒中10例,短暂性脑缺血发作1例,颅内出血7例,头痛头晕3例。CS TOF-MRA与CTA检查时间间隔5(4,7)天。

2.2 CS TOF-MRA和CTA对MMD分期的评估

       两位阅片者对Suzuki分期的评估一致性较好(Kappa值:CS TOF-MRA 0.73,CTA 0.86)。CS TOF-MRA和CTA对MMD患者的Suzuki分期评估差异无统计学意义(Z=-1.000,P>0.05,表1)。

表1  CS TOF-MRA与CTA对烟雾病分期及出血相关血管的显示能力
Tab. 1  Visualization of Suzuki classification and hemorrhage related vascular by CS TOF-MRA and CTA

2.3 CS TOF-MRA和CTA对MMD出血相关血管的评估

       两位阅片者对MMV、AChA及PComA显示质量主观评分的一致性均较好(Kappa值:CS TOF-MRA 0.73~0.82,CTA 0.76~0.84)。基于CS TOF-MRA图像,MMV可视化评分2分以上为14例(66.7%),优于CTA(11例,52.4%),差异具有统计学意义(Z=-2.110,P<0.05),评分提高1分及以上患者9例(42.9%)。AChA的可视化评分2分及以上共19例(90.5%),显著优于CTA(8例,38.1%)(Z=-3.314,P<0.05),评分提高1分及以上患者13例(61.9%)。PComA的可视化评分2分及以上为20例(95.2%),显著优于CTA(15例,71.4%)(Z=-2.449,P<0.05),评分提高1分及以上患者6例(28.6%)。两种模态对MMD出血相关血管显示质量的具体评分见表1

       以单侧大脑半球为单位对AChA、PComA有无扩张进行分级评估,共纳入37个大脑半球(5例单侧MMD,16例双侧MMD)。两位阅片者对AChA、PComA扩张评估一致性好(Kappa值:CS TOF-MRA 0.78、0.84,CTA 0.83、0.78)。CS TOF-MRA和CTA对AChA及PComA的扩张分级评估中差异均无统计学意义(Z=-0.535,P>0.05;Z=-1.732,P>0.05)(表2)。1例双侧MMD患者的影像图像见图1

图1  男,28岁,双侧烟雾病,Suzuki Ⅲ期。1A、1C为CTA最大密度投影图,1B、1D为压缩感知时间飞跃法磁共振血管造影(CS TOF-MRA)MIP图。图1A、1B显示CS TOF-MRA在颅底烟雾状血管的显示优于CTA(评分:3分 vs. 2分,细箭),无骨结构干扰;后交通动脉正常(1级),显示能力两者相当(评分:3分 vs. 3分,三角箭头)。图1C、1D显示左侧脉络膜前动脉(AChA)轻度扩张延伸(1级),右侧AChA无扩张延伸(0级),CS TOF-MRA对AChA的显示能力优于CTA(评分:3分 vs. 2分,粗箭)。
Fig. 1  A 28-year-old man patient with Bilateral moyamoya disease and suffering Suzuki Ⅲ. 1A, 1C are maximum intensity projection (MIP) images of computed tomography angiography (CTA); 1B, 1D are MIP images of compressed sensing time-of-fight magnetic resonance angiography (CS TOF-MRA). CS TOF-MRA shows better than CTA in moyamoya vessel at the base of the skull (score: 3 vs. 2, thin arrow), without interference from bone structure. Posterior communicating artery appears normal (grade 1), the ability of visualization is comparable (score: 3 vs. 3, triangular arrow). Left anterior choroidal artery (AChA) is slightly dilated (grade 1), right AChA appears normal (grade 0), the ability of visualization CS TOF-MRA is better than CTA (score: 3 vs. 2, thick arrow).
表2  CS TOF-MRA与CTA对AChA、PComA血管扩张分级评估
Tab. 2  The dilatation of AChA and PComA by CS TOF-MRA and CTA

3 讨论

       本研究旨在讨论高分辨率CS TOF-MRA技术用于MMD分期和MMV、AChA及PComA血管评估中的价值,结果显示在合理的扫描时间内高分辨率CS TOF-MRA可提供与传统CTA相当的Suzuki分期能力,为MMV、AChA及PComA提供更好的可视化,体现了较好的临床应用价值。据我们所知,本研究是国内外首次提出TOF-MRA与CS技术相结合将分辨率提升到0.4 mm×0.4 mm×0.4 mm,用于MMD分期和出血相关血管(MMV、AChA及PComA)的评估。与CTA技术相比,CS TOF-MRA扫描技术是无电离辐射无需注射对比剂的一种检查技术,因此它的评估和应用将使MMD患者受益颇多。

3.1 与传统成像技术相比高分辨率CS TOF-MRA的优势

       DSA是诊断MMV形成和AChA及PComA扩张的金标准,但其禁忌证和潜在并发症较多,检查费用昂贵,故不适用于常规筛查和术后随访[25]。头颅CTA是目前临床常用的诊断MMD的影像学方法,其对小血管的显示有独特的优势,但CTA动脉时相的获得对设备、技师以及患者血管条件的要求较高,有静脉污染、对比剂外渗而导致检查失败的风险。而且CTA具有电离辐射,造影时注射流速快(通常为4~5 mL/s),患者常有身体发热的不适感,对比剂也会造成患者肾脏的负担,肾功能异常者无法使用。常规头颅TOF-MRA利用流体饱和效应中的流入增强效应成像,无需注射对比剂,无骨伪影干扰。但是其受扫描时间限制,空间分辨率有限,对颅内小血管的显示不如CTA[21]

       CS技术是近年非常热门的快速成像技术,其原理是在非线性迭代重建中,利用图像结构的内在稀疏性和欠采样K空间数据重建获得逼近全采样的图像质量,从而缩短了数据采集时间[26, 27, 28]。FUSHIMI等[29]研究认为CS加速因子小于6时,AChA显示较佳。YAMAMOTO等[30, 31]比较了CS TOF-MRA不同加速因子(CS3和CS5)对MMD侧支血管的显示差异,认为CS3显示更佳,但CS3扫描时间长于CS5。既往研究认为TOF-MRA分辨率在0.6 mm×0.6 mm以上可称为高分辨率成像,有利于MMD侧支血管的显示[32]。MMV、AChA及PComA均属于分支小血管,考虑到临床扫描时间,本研究采用加速因子为5的CS TOF-MRA序列,进行各向同性高分辨率扫描(重建体素为0.4 mm×0.4 mm×0.4 mm),扫描时间为5 min 4 s,而采用常规TOF-MRA(并行采集加速因子为2)获得与之相同分辨率和扫描范围需10 min 8 s。高分辨CS TOF-MRA序列兼顾了扫描速度和分辨率,提高血管边缘锐利度的同时无需考虑颅骨的干扰,有利于将CS TOF-MRA序列纳入到其他扫描协议中(如高分辨血管壁成像、脑灌注等),同时便于对MMD血管闭塞继发的脑实质病变如颅内出血、脑梗死等进行全面评估。

3.2 高分辨率CS TOF-MRA对MMD分期及出血相关血管的评估

       Suzuki分期与MMD出血风险密切相关,有研究表明Ⅲ~Ⅳ级MMD患者的脑出血比例较高[33, 34],本研究中7名脑出血患者中有5名处于Suzuki分期的Ⅲ期,与之前的研究结果一致。基于CS TOF-MRA的Suzuki分期同传统的CTA成像比较差异无统计学意义,高分辨率CS TOF-MRA显著提高了MMD出血相关血管的显示能力,42.9%的MMV血管、61.9%的AChA及28.6%的PComA血管评分提高了≥1分。同CTA图像比较,CS TOF-MRA上出血相关血管的边缘锐利度高、血管与组织背景对比度好、可清晰连续显示,因而评分≥2分的血管比例显著高于CTA。这一提高可能与MRA图像本身具有的稀疏性有关,而采用CS技术后,背景或噪声在经过稀疏变换和大量的迭代算法后被过滤,进一步提高背景信号抑制,突出血管信号。此外,CS TOF-MRA各向同性高分辨率的原始数据可进行多角度的三维MIP图像重建,无颅骨干扰有利于血管的显示和诊断。

       既往有研究认为,同DSA相比,CTA可准确对AChA和PComA扩张程度进行分级[35],故本研究将CS TOF-MRA与CTA进行比较,发现CS TOF-MRA在AChA、PComA的扩张分级评价中与之能力相当。本研究中7名脑出血患者中6名患者出血半球的AChA扩张达1级及以上,而非出血MMD患者中亦可观察到扩张的AChA,预示着该类患者非出血半球出血风险增加,与之前报道一致[36]

3.3 本研究的局限性

       首先,DSA被认为是MMD评估的金标准,但本研究入组的大多是诊断MMD后常规复查的患者,DSA往往不作为该类患者首选的检查模式,因此本研究中只有3例MMD患者同时接受了DSA检查。Suzuki分期和AChA、PComA扩张分级无传统的金标准参考,可能会存在偏差。其次,本研究采用快速迭代收缩阈值算法进行迭代重构,迭代次数固定为10次,重建时间为2 min 35 s。虽然更多的迭代次数可能进一步提高小血管的显示能力,然而考虑到随之延长的图像重建时间,可能会影响扫描流程,本研究未对比其他迭代次数。最后,由于MMD发病率较低,符合纳入条件的患者数量较少,故导致本研究样本量相对较少,未来将扩大样本量进一步验证和完善本研究的结果。

4 结论

       综上所述,与CTA相比,高分辨率CS TOF-MRA序列在临床合理的扫描时间内,对MMV、AChA及PComA的显示优于CTA,Suzuki分期和血管扩张分级评估与之相当。由于该技术无创、无需注射对比剂,可重复检查,儿童或需要短期内多次随访复查的MMD患者可优先选择,具有较高的临床应用价值。

[1]
SUZUKI J, TAKAKU A. Cerebrovascular "moyamoya" disease. Disease showing abnormal net-like vessels in base of brain[J]. Arch Neurol, 1969, 20(3): 288-299. DOI: 10.1001/archneur.1969.00480090076012.
[2]
IHARA M, YAMAMOTO Y, HATTORI Y, et al. Moyamoya disease: diagnosis and interventions[J]. Lancet Neurol, 2022, 21(8): 747-758. DOI: 10.1016/S1474-4422(22)00165-X.
[3]
GUPTA A, TYAGI A, ROMO M, et al. Moyamoya disease: a review of current literature[J/OL]. Cureus, 2020, 12(8): e10141 [2022-3-12]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7526970/. DOI: 10.7759/cureus.10141.
[4]
LI J C, JIN M Y, SUN X Y, et al. Imaging of moyamoya disease and moyamoya syndrome: current status[J]. J Comput Assist Tomogr, 2019, 43(2): 257-263. DOI: 10.1097/RCT.0000000000000834.
[5]
宋晓雯, 张谦, 赵继宗. 烟雾病流行病学研究进展[J/OL]. 中华脑血管病杂志(电子版), 2021, 15(1): 9-15 [2022-5-10]. https://zhnxgbzz.cma-cmc.com.cn/CN/10.11817/j.issn.1673-9248.2021.01.002. DOI: 10.11817/j.issn.1673-9248.2021.01.002.
SONG X W, ZHANG Q, ZHAO J Z. Research progress in the epidemiology of moyamoya disease[J/OL]. Chin J Cerebrovasc Dis Electron Ed, 2021, 15(1): 9-15 [2022-5-10]. https://zhnxgbzz.cma-cmc.com.cn/CN/10.11817/j.issn.1673-9248.2021.01.002. DOI: 10.11817/j.issn.1673-9248.2021.01.002.
[6]
KOBAYASHI E, SAEKI N, OISHI H, et al. Long-term natural history of hemorrhagic moyamoya disease in 42 patients[J]. J Neurosurg, 2000, 93(6): 976-980. DOI: 10.3171/jns.2000.93.6.0976.
[7]
HAN Q D, YAO F R, ZHANG Z Y, et al. Evaluation of revascularization in different suzuki stages of ischemic moyamoya disease by whole-brain CT perfusion[J/OL]. Front Neurol, 2021, 12: 683224 [2022-4-3]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8343098/. DOI: 10.3389/fneur.2021.683224.
[8]
SUN H G, LI W J, XIA C, et al. Angiographic and hemodynamic features in asymptomatic hemispheres of patients with moyamoya disease[J]. Stroke, 2022, 53(1): 210-217. DOI: 10.1161/STROKEAHA.121.035296.
[9]
刘鹏, 咸鹏, 李德生, 等. 烟雾病再出血患者的临床及影像学特征分析[J]. 中国脑血管病杂志, 2013, 10(1): 26-30. DOI: 10.3969/j.issn.1672-5921.2013.01.007.
LIU P, XIAN P, LI D S, et al. Analysis of clinical and imaging features of rebleeding in patients with moyamoya disease[J]. Chin J Cerebrovasc Dis, 2013, 10(1): 26-30. DOI: 10.3969/j.issn.1672-5921.2013.01.007.
[10]
WANG J, YANG Y, LI X, et al. Lateral posterior choroidal collateral anastomosis predicts recurrent ipsilateral hemorrhage in adult patients with moyamoya disease[J]. AJNR Am J Neuroradiol, 2019, 40(10): 1665-1671. DOI: 10.3174/ajnr.A6208.
[11]
KANG S, LIU X J, ZHANG D, et al. Natural course of moyamoya disease in patients with prior hemorrhagic stroke[J]. Stroke, 2019, 50(5): 1060-1066. DOI: 10.1161/STROKEAHA.118.022771.
[12]
WU F, HAN C, LIU Y H, et al. Validation of choroidal anastomosis on high-resolution magnetic resonance imaging as an imaging biomarker in hemorrhagic moyamoya disease[J]. Eur Radiol, 2021, 31(7): 4548-4556. DOI: 10.1007/s00330-020-07479-0.
[13]
YAMAMOTO S, HORI S, KASHIWAZAKI D, et al. Longitudinal anterior-to-posterior shift of collateral channels in patients with moyamoya disease: an implication for its hemorrhagic onset[J]. J Neurosurg, 2018, 130(3): 884-890. DOI: 10.3171/2017.9.JNS172231.
[14]
LUO Q, YU J L. Moyamoya disease with posterior communicating artery aneurysm: a case report[J]. Turk Neurosurg, 2013, 23(4): 546-550. DOI: 10.5137/1019-5149.JTN.5668-11.1.
[15]
WADDLE S L, GARZA M, DAVIS L T, et al. Presurgical magnetic resonance imaging indicators of revascularization response in adults with moyamoya vasculopathy[J]. J Magn Reson Imaging, 2022, 56(4): 983-994. DOI: 10.1002/jmri.28156.
[16]
BYWORTH M T, MOFFATT J I, PERERA K S. Novel vascular anastomoses and moyamoya disease in a woman with down syndrome[J]. Can J Neurol Sci, 2021, 48(3): 417-418. DOI: 10.1017/cjn.2020.195.
[17]
LU M M, ZHANG H T, LIU S T, et al. Long-term outcomes of moyamoya disease versus atherosclerosis-associated moyamoya vasculopathy using high-resolution MR vessel wall imaging[J/OL]. J Neurol Neurosurg Psychiatry, 2023 [2023-3-3]. https://jnnp.bmj.com/content/early/2023/03/02/jnnp-2022-330542.long. DOI: 10.1136/jnnp-2022-330542.
[18]
FENG L, BENKERT T, BLOCK K T, et al. Compressed sensing for body MRI[J]. J Magn Reson Imaging, 2017, 45(4): 966-987. DOI: 10.1002/jmri.25547.
[19]
ZHANG X, CAO Y Z, MU X H, et al. Highly accelerated compressed sensing time-of-flight magnetic resonance angiography may be reliable for diagnosing head and neck arterial steno-occlusive disease: a comparative study with digital subtraction angiography[J]. Eur Radiol, 2020, 30(6): 3059-3065. DOI: 10.1007/s00330-020-06682-3.
[20]
李青, 鲁珊珊, 孙涛, 等. 压缩感知技术在头颅磁共振血管成像中的应用研究[J]. 中国医学装备, 2020, 17(2): 66-70. DOI: 10.3969/J.ISSN.1672-8270.2020.02.018.
LI Q, LU S S, SUN T, et al. The applied research on the CS technique in intracranial MRA[J]. China Med Equip, 2020, 17(2): 66-70. DOI: 10.3969/J.ISSN.1672-8270.2020.02.018.
[21]
REN S J, WU W, SU C Q, et al. High-resolution compressed sensing time-of-flight MR angiography outperforms CT angiography for evaluating patients with Moyamoya disease after surgical revascularization[J/OL]. BMC Med Imaging, 2022, 22(1): 64 [2022-3-25]. https://bmcmedimaging.biomedcentral.com/articles/10.1186/s12880-022-00790-w. DOI: 10.1186/s12880-022-00790-w.
[22]
梁振华, 何伟红, 黄耀渠, 等. 成人烟雾病MRI表现与MRA血管分级的相关性研究[J]. CT理论与应用研究, 2019, 28(6): 669-675. DOI: 10.15953/j.1004-4140.2019.28.06.04.
LIANG Z H, HE W H, HUANG Y Q, et al. Relationship between MRI performance and vascular score of MRA in adult moyamoya disease[J]. Comput Tomogr Theory Appl, 2019, 28(6): 669-675. DOI: 10.15953/j.1004-4140.2019.28.06.04.
[23]
LIU W H, ZHU S G, WANG X L, et al. Evaluation of angiographic changes of the anterior choroidal and posterior communicating arteries for predicting cerebrovascular lesions in adult moyamoya disease[J]. J Clin Neurosci, 2011, 18(3): 374-378. DOI: 10.1016/j.jocn.2010.05.032.
[24]
MORIOKA M, HAMADA J, KAWANO T, et al. Angiographic dilatation and branch extension of the anterior choroidal and posterior communicating arteries are predictors of hemorrhage in adult moyamoya patients[J]. Stroke, 2003, 34(1): 90-95. DOI: 10.1161/01.str.0000047120.67507.0d.
[25]
TIAN B, JIANG Y, KANG Q. Comparative study of 4D CTA and DSA for vascular assessment in moyamoya disease[J]. Clin Imaging, 2018, 48: 74-78. DOI: 10.1016/j.clinimag.2017.10.005.
[26]
DUMAN I E, DEMERATH T, STADLER A, et al. High-resolution gadolinium-enhanced MR cisternography using compressed-sensing T1 SPACE technique for detection of intracranial CSF leaks[J]. AJNR Am J Neuroradiol, 2021, 42(1): 116-118. DOI: 10.3174/ajnr.A6852.
[27]
MOGHARI M H, ANNESE D, GEVA T, et al. Three-dimensional heart locator and compressed sensing for whole-heart MR angiography[J]. Magn Reson Med, 2016, 75(5): 2086-2093. DOI: 10.1002/mrm.25800.
[28]
CHEN Z Y, SUN B, XUE Y J. Comparing compressed sensing breath-hold 3D MR cholangiopancreatography with two parallel imaging MRCP strategies in main pancreatic duct and common bile duct[J/OL]. Eur J Radiol, 2021, 142: 109833 [2022-4-26]. https://www.ejradiology.com/article/S0720-048X(21)00314-4/fulltext. DOI: 10.1016/j.ejrad.2021.109833.
[29]
FUSHIMI Y, MIKI Y, KIKUTA K I, et al. Comparison of 3.0- and 1.5-T three-dimensional time-of-flight MR angiography in moyamoya disease: preliminary experience[J]. Radiology, 2006, 239(1): 232-237. DOI: 10.1148/radiol.2383042020.
[30]
YAMAMOTO T, FUJIMOTO K, OKADA T, et al. Time-of-flight magnetic resonance angiography with sparse undersampling and iterative reconstruction: comparison with conventional parallel imaging for accelerated imaging[J]. Invest Radiol, 2016, 51(6): 372-378. DOI: 10.1097/RLI.0000000000000221.
[31]
YAMAMOTO T, OKADA T, FUSHIMI Y, et al. Magnetic resonance angiography with compressed sensing: an evaluation of moyamoya disease[J/OL]. PLoS One, 2018, 13(1): e0189493 [2022-5-5]. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0189493. DOI: 10.1371/journal.pone.0189493.
[32]
李雪平, 张鑫, 周飞, 等. 成人出血型烟雾病磁共振成像的研究进展[J]. 磁共振成像, 2019, 10(1): 57-63. DOI: 10.12015/issn.1674-8034.2019.01.011.
LI X P, ZHANG X, ZHOU F, et al. Applications of magnetic resonance imaging in adult patients with hemorrhage moyamoya disease[J]. Chin J Magn Reson Imaging, 2019, 10(1): 57-63. DOI: 10.12015/issn.1674-8034.2019.01.011.
[33]
PILGRAM-PASTOR S, CHAPOT R, KRAEMER M. The angiographic presentation of European moyamoya angiopathy[J]. J Neurol, 2022, 269(2): 997-1006. DOI: 10.1007/s00415-021-10684-6.
[34]
SREENIVASAN S A, SURI A, RAHEJA A, et al. Effect of age, stage, and type of surgical revascularization on clinical and angiographic outcome in moyamoya disease - experience from a case series of 175 revascularization procedures[J]. Neurol India, 2022, 70(5): 2072-2081. DOI: 10.4103/0028-3886.359200.
[35]
GUO X, GAO L Y, YU H, et al. Computed tomographic angiography may be used for assessing the dilatation of the anterior choroidal and posterior communicating arteries in patients with moyamoya syndrome[J]. Eur Radiol, 2021, 31(8): 5544-5551. DOI: 10.1007/s00330-021-07722-2.
[36]
FUNAKI T, TAKAHASHI J C, HOUKIN K, et al. Effect of choroidal collateral vessels on de novo hemorrhage in moyamoya disease: analysis of nonhemorrhagic hemispheres in the Japan Adult Moyamoya Trial[J]. J Neurosurg, 2019, 132(2): 408-414. DOI: 10.3171/2018.10.JNS181139.

上一篇 基于DTI和ASL联合成像量化监测不同Fazekas评分的脑白质高信号患者正常脑白质区域的隐匿性损伤
下一篇 3.0 T动态对比增强MRI联合扩散加权成像在鉴别唾液腺多形性腺瘤和基底细胞腺瘤中的诊断价值
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2