分享:
分享到微信朋友圈
X
综述
基于静息态功能磁共振成像技术的膝骨关节炎疼痛脑功能重塑机制研究进展
许辉 周运峰 赵翅 谢雨辰 周航 李婉玉 郭娟

Cite this article as: XU H, ZHOU Y F, ZHAO C, et al. Research progress on brain function remodeling mechanism of knee osteoarthritis pain based on resting-state functional magnetic resonance imaging technology[J]. Chin J Magn Reson Imaging, 2023, 14(3): 198-202.本文引用格式:许辉, 周运峰, 赵翅, 等. 基于静息态功能磁共振成像技术的膝骨关节炎疼痛脑功能重塑机制研究进展[J]. 磁共振成像, 2023, 14(3): 198-202. DOI:10.12015/issn.1674-8034.2023.03.037.


[摘要] 膝骨关节炎(knee osteoarthritis, KOA)疼痛使其成为功能性致残的主要疾患之一。KOA疼痛会导致中枢神经系统各级痛觉投射神经元均处于高敏状态,并最终诱发脑疼痛调控环路功能重塑。静息态功能磁共振成像(resting-state functional magnetic resonance imaging, rs-fMRI)使得KOA疼痛脑功能重塑机制变得直观,为其中枢病理机制研究提供了有力支持。本文通过对近五年相关文献进行总结发现,目前基于rs-fMRI对KOA疼痛脑功能重塑机制研究多集中于局部脑区,需要进一步从脑功能整合角度借助多种功能和结构成像方法更为全面揭示其重塑机制,明确KOA疼痛引起的各脑区间、脑网络的功能属性连接变化。本文综述了rs-fMRI发展及其在KOA疼痛脑功能重塑机制的具体应用,并对其研究现状进行讨论和展望,以期为KOA疼痛临床管理及机制研究提供新思路。
[Abstract] Knee osteoarthritis (KOA) pain makes KOA become one of the main diseases causing functional disability. KOA pain will cause all levels of pain projection neurons in the central nervous system to be in a highly sensitive state, and ultimately induce the functional remodeling of the pain regulation loop in the brain. Resting state functional magnetic resonance imaging (rs-fMRI) makes the mechanism of brain function remodeling of KOA pain intuitive, and provides strong support for the study of central pathological mechanism. Based on the summary of relevant literature in recent 5 years, this paper found that the current research on the mechanism of KOA pain brain function remodeling based on rs-fMRI is mostly focused on local brain regions. It is necessary to further reveal its remodeling mechanism from the perspective of brain function integration with the help of multiple functional and structural imaging methods, and clarify the functional connectivity changes of various brain regions and brain networks caused by KOA pain. This article introduces the development of rs-fMRI and its specific application in the mechanism of KOA pain brain function remodeling, and discusses and prospects its research status, in order to provide new ideas for the clinical management and mechanism research of KOA pain.
[关键词] 膝骨关节炎;疼痛;脑;磁共振成像;功能磁共振成像;静息态功能磁共振成像
[Keywords] knee osteoarthritis;pain;brain;magnetic resonance imaging;functional magnetic resonance imaging;resting-state functional magnetic resonance imaging

许辉 1, 2   周运峰 2   赵翅 2*   谢雨辰 3   周航 4   李婉玉 2   郭娟 2  

1 河南中医药大学第三附属医院推拿科,郑州 450003

2 河南中医药大学针灸推拿学院,郑州 450046

3 河南省中医院推拿科,郑州 450003

4 河南中医药大学第三附属医院磁共振室,郑州 450003

通信作者:赵翅,E-mail:zhaochi1216@163.com

作者贡献声明:赵翅参与设计本综述选题、资料的分析;许辉起草和撰写稿件,分析与解释本研究的数据;周运峰对学术内容的重要方面进行关键修改;谢雨辰、周航、李婉玉、郭娟获取、分析本研究的数据,对稿件重要内容进行了修改;周运峰获得了国家自然科学基金的资助,许辉获得了河南省科技攻关项目和河南省中医药科学研究专项基金的资助;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 国家自然科学基金 81874513 河南省科技攻关项目 222102310214 河南省中医药科学研究专项 2022ZY1108
收稿日期:2022-06-23
接受日期:2023-02-06
中图分类号:R445.2  R684.3 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2023.03.037
本文引用格式:许辉, 周运峰, 赵翅, 等. 基于静息态功能磁共振成像技术的膝骨关节炎疼痛脑功能重塑机制研究进展[J]. 磁共振成像, 2023, 14(3): 198-202. DOI:10.12015/issn.1674-8034.2023.03.037.

0 前言

       骨关节炎(osteoarthritis, OA)是一种慢性关节疾病,以关节软骨退化和骨质增生为特征[1]。膝骨关节炎(knee osteoarthritis, KOA)是OA常见的类型之一[2, 3, 4, 5, 6],疼痛是其主要临床不适症状,并使其成为功能性致残的主要疾患之一[7, 8]。KOA在全球患病率从4.2%到15.5%不等,并随年龄增长而增加[9]。我国成人KOA总患病率约为15%,大于60岁约为50%[10]。随着我国人口老龄化加剧,KOA患病率逐渐升高,将会造成巨大经济和社会负担。

       KOA疼痛不仅与膝关节结构损伤有关,还和遗传、肥胖、心理以及中枢神经系统等因素相关[11]。研究人员发现,中枢神经系统在KOA疼痛发病过程中具有重要作用[12, 13]。神经系统在应对各种环境条件时其结构和功能的能力被称为神经可塑性[14, 15]。我们近期借助静息态功能磁共振成像(resting-state functional magnetic resonance imaging, rs-fMRI)发现,KOA疼痛可能会引起左侧颞中回与右侧额上回、左侧额中回和左侧内侧额上回功能连接(functional connectivity, FC)减弱[16]。rs-fMRI作为应用广泛的神经功能影像学技术,为脑功能重塑研究提供了新的工具[17, 18]。大量研究采用rs-fMRI揭示不同临床疼痛的脑功能重塑机制,如慢性背痛[19, 20]、纤维肌痛[21, 22, 23]、前庭性偏头痛[24]、原发性痛经[25]等。

       本文对近年来采用rs-fMRI研究KOA疼痛脑功能重塑机制相关文献进行综述,并对其研究现状进行讨论和展望,以期为KOA疼痛临床管理及机制研究提供新思路。

1 脑功能重塑是KOA疼痛重要病理机制

       既往研究认为,外周因素如关节软骨破坏、滑膜炎性反应等是KOA疼痛关键环节[26, 27, 28]。但许多研究发现其影像学表现、滑膜炎症的严重程度和KOA患者临床症状疼痛评分并不一定相关,这说明外周机制不能完全解释KOA疼痛[29, 30, 31, 32]。同时,研究人员发现KOA患者存在非受累部位疼痛敏感性升高现象,从而证实中枢对长期疼痛传入信号的“异常加工”可能是KOA疼痛关键因素[33, 34]

       KOA引起的疼痛信号从外周长期持续传入,会导致中枢各级痛觉投射神经元均处于高敏状态,使得疼痛信号在上传过程中不断被放大,导致痛觉感受不断加强,从而诱发脑功能重塑[35]。石爱军等[36]通过比较KOA患者与健康人群,发现KOA患者双侧额叶、颞叶、顶叶等脑区局部一致性(regional homogeneity, ReHo)存在广泛异常,这说明KOA患者除了疼痛信息处理的脑功能异常外,更是广泛涉及情绪、认知功能等脑功能病理改变。刘涛[37]发现KOA患者双侧中央后回、左前额叶皮层、左颞中回等区域低频振幅(amplitudeof low frequency fluctuations, ALFF)降低,双侧额中回、枕叶皮层、左中央前回等区域ReHo降低,证实KOA疼痛脑功能重塑机制与疼痛感觉、调控的诸多脑区功能活性降低相关。另外,研究人员发现KOA疼痛可通过改变不同脑区间信息流动、整合而对脑功能产生影响[38, 39, 40]

       KOA疼痛所引起的脑功能重塑区域涉及广泛,其具体机制和痛感觉、痛情绪、痛认知等方面的脑区功能活动异常密切相关。目前,需要进一步扩大被试数量,通过大样本的试验设计以明确KOA疼痛影像学特征,同时也可以帮助揭示KOA疼痛信息加工中全脑网络的协同作用。

2 rs-fMRI概述

       rs-fMRI信号直接来自于人体脑神经活动,具有无创、活体的优势,该技术适用于各年龄段被试,同一被试可在短时间内多次参加试验。另外,rs-fMRI空间分辨率较高,可以进行精确功能定位。因此,自其发明开始,其在疾病早期诊断、预测、疗效评估方面就被寄予厚望。rs-fMRI始于Ogawa和Rosen利用脑血容量变化得到的人脑活动fMRI图像,其基本原理是基于氧合血红蛋白和脱氧血红蛋白之间的磁场特性差异测量血氧水平依赖(blood oxygen level dependent functional, BOLD)信号,以此来反映脑局部组织在T2WI上的改变,揭示静息状态下神经元活动情况。rs-fMRI检测信号的低频振荡和神经元的自发活动关系密切,和被试内外环境监测、清醒意识维持等功能相关,因此具有明确的生理意义和病理意义[41]。研究表明,静息态脑部神经元活动需要消耗非常多能量,大约是人体总能耗的五分之一,同时这些神经元活动导致的波动并非随机噪声,而是具有明显特征[42]

       rs-fMRI将传统脑解剖结构的检查拓展到了对神经功能活动水平上的检测,使KOA疼痛脑功能重塑机制变得直观,弥补了研究中非活体、不可视、创伤性的缺陷。但rs-fMRI自身又有一些缺陷,比如时间分辨率较低、MRI机器昂贵、噪音大等。因此,研究人员可在试验设计初期,可将脑磁图、功能性近红外光学成像、经颅磁刺激等影像学技术与rs-fMRI进行对比选择或联合应用,以弥补使用rs-fMRI所带来的局限性。

3 rs-fMRI不同评价指标在KOA疼痛中的应用

3.1 局部脑区功能变化

       rs-fMRI局部脑区功能评价指标包括低频振幅算法[ALFF、分数低频振幅(fractional ALFF, fALFF)、百分比振幅(percent amplitude of fluctuation, PerAF)]以及ReHo。ALFF升高的意义是脑区自发功能活动增强,降低的意义是脑区自发功能活动减弱[43]。fALFF、PerAF为ALFF衍生指标,均能反映自发功能活动变化;fALFF是指特定频率振幅占整个频段的相对比例,有利于减少个体因素差异;PerAF通过在时间序列上标准化,有利于改善ALFF对原始信号尺度的敏感。在低频振幅算法中PerAF是一种更有效、可靠、直观的研究方法,可信度略高于ALFF、fALFF[44]。ReHo升高提示神经元活动时间上趋向于同步,降低提示神经元活动时间上趋向于无序。

       通过采用rs-fMRI对KOA患者局部脑区功能进行评价,研究人员发现KOA疼痛导致广泛的脑区功能异常。PUJOL等[45]发现KOA患者中对于胫骨压力刺激疼痛敏感人群脑区激活较多,这些区域通常涉及疼痛的区域,以及这些区域之外延伸到听觉、视觉和腹侧感觉运动皮层,导致顶叶区、后脑岛、角回、视觉皮层等脑区被激活,证实KOA患者中致敏现象与脑功能重塑有关,长期的慢性疼痛增强了一般感觉和非伤害性脑区的活动。SONI等[35]发现有神经病理性疼痛的KOA患者背侧前扣带皮层的神经元活动明显降低,背侧外侧延髓的神经元活动升高,说明这部分KOA患者存在中枢介导痛觉敏化,这可能是脊髓上介导的伤害性信号抑制减少和传导的促进增加所导致。BALIKI等[46]证实KOA疼痛主要和丘脑、岛叶、扣带回等的异常活动有关。

       KOA疼痛的形成是多脑区共同参与的复杂过程,因此不同脑区的功能分工是目前研究热点。在KOA疼痛脑功能重塑机制研究中ALFF和ReHo具有较好的可重复性和较为明确的生理意义,能够反映脑区局部神经元活动特征。

3.2 脑区间FC变化

       人类运动、感觉、视觉、听觉等均在特定脑区主导参与下得以实现,而所表现出的复合行为则需通过相应脑区间的FC来实现。FC是指不同解剖脑区间同步活动,如果两个脑区存在活动相关性则表明FC存在,可以反映脑区间FC属性,明确脑功能网络异常状态。FC分析方法中基于种子点的FC最为常用,即需要先确定一个脑区或多个脑区作为感兴趣区(region of interest, ROI),进而提取出ROI内平均时间序列,然后计算ROI之间或者每个ROI和全脑体素时间序列的皮尔逊相关系数,具体可以分为基于体素水平的FC分析和基于ROI水平的FC分析。

       FC有利于帮助认识静息状态下KOA患者不同脑区间协同作用,为揭示人脑不同维度的疼痛加工提供重要线索。张海波等[47]发现KOA患者双侧丘脑腹后外侧核(ventral posterolateral nucleus, VPLN)与多个脑区的FC存在异常,其中双侧丘脑VPLN与左侧及右侧小脑后叶、中脑和左侧海马FC明显增强。肖阳等[48]发现与健康受试者相比,KOA患者双侧伏隔核(nucleus accumbens, NAc)与双侧前扣带回、左侧尾状核和右侧颞极FC增强,与右侧背外侧前额叶、左侧次感觉区、双侧角回FC减弱,这些结果提示中枢多巴胺系统相关脑区NAc与认知控制、情绪调节、感觉加工相关脑区及默认模式网络(default mode network, DMN)的FC异常可能是KOA患者疼痛发生机制之一。COTTAM等[49]发现KOA患者右前脑岛和DMN区域之间负相关增强,左侧背侧前额叶皮层与右侧颞回的FC减弱,这些发现证明了KOA疼痛会引起广泛脑区异常,并指出了右前岛叶的驱动作用。王欣等[50]发现KOA会导致右侧丘脑脑功能改变,同时改变了丘脑与右侧中央前回、楔前叶、中央后回、顶上小叶在内的脑区间双向有效连接,说明KOA导致的长期慢性疼痛会改变脑区间FC。

       对KOA患者FC的研究有利于从脑功能整合角度出发,全面了解KOA疼痛所导致的脑功能重塑,但目前只有通过采用多种功能和结构成像方法,对脑功能结构的认识才会具有重要意义。

3.3 脑网络功能变化

       脑的功能网络十分复杂,功能分化和功能整合是脑功能网络理论基础。基于图论的复杂脑网络分析主要是将人类每一个脑区视为相对应的“节点”,将各个脑区之间的连接视为“边”,以揭示全脑高效有序的信息传递[51]。这种分析方法可以评估脑各区域间的整体连接模式,有利于将脑构建成每个脑区间相互连接的复杂网络。基于图论的复杂脑网络分析包括度中心度(degree centrality, DC)、独立成分分析(independent component analysis, ICA)等,DC可以在脑网络中显示目标脑区与全脑间相关性,可反映该脑区在脑网络中的中心度水平[52];ICA指通过盲源分离算法可以有效地探测脑激活区域,找出具有功能一致性的脑区,从而界定不同脑功能网络。

       DMN是rs-fMRI文献中研究最广泛的功能网络,是一种在静息状态下维持着同步、低频的自发脑神经活动,而在任务态下呈持续负激活状态的脑区域所组成的功能网络。谢洪武等[53]发现相对于正常受试者,KOA患者DMN内存在异常改变,其中后扣带回呈现明显负激活,边缘叶、脑岛呈现正激活,为诊断和治疗KOA疼痛提供功能影像依据。BALIKI等[54]研究发现,KOA患者DMN中内侧前额叶皮层表现出显著激活,同时和DMN其他组成脑区FC降低,证实长期KOA疼痛可导致DMN发生功能重塑。HIRAMATSU等[55]研究证实,与健康受试者相比KOA患者前额背外侧网络与“疼痛矩阵”存在异常脑FC。

       目前,对KOA疼痛所导致的脑网络功能变化主要集中在单个脑功能网络,应增加对多个疼痛相关脑网络间整合方式的研究。同时,如果能明确KOA患者疼痛相关脑网络的静息态联动方式和特点,将更有利于帮助全面地诠释KOA疼痛脑功能重塑机制。

4 总结与展望

       疼痛中枢由多个脑区相互作用的神经网络构成,痛觉是由疼痛中枢多种复杂的脑活动引起,具有多维属性的疼痛主观感知,主要包括感觉、情绪、认知及行为等多个维度,和脊髓、脑干、边缘系统及大脑皮层等多个痛觉传导及加工区域相关。功能神经影像学的相关研究发现已经证实脑内和疼痛上行传导通路及下行传导通路密切相关的区域有前额叶皮质、杏仁核、基底核等,这些区域整体构成了脑内疼痛基质的脑网络结构[56]。rs-fMRI作为一种新兴的神经功能影像学技术,具有活体、无创、操作方便等特点,有利于探索KOA疼痛脑功能重塑机制,同时也为其KOA疼痛管理的靶向性干预提供了工具支持。

       目前,借助rs-fMRI针对KOA疼痛所引起的局部脑区功能变化研究较多,ALFF、ReHo是较为常用的评价指标,因此有必要进一步扩大试验样本量,明确KOA疼痛特异性脑区。FC、脑网络有利于从脑功能整合角度揭示KOA疼痛机制,但需要多种功能和结构成像方法为基础,同时需要增加对脑网络间的关联性研究。随着rs-fMRI技术的不断进步,其将在KOA疼痛脑功能重塑机制中发挥更加重要作用,为优化KOA疼痛的临床管理和机制研究提供有力支持。

[1]
KOPEC J A, SAYRE E C, OKHMATOVSKAIA A, et al. A comparison of three strategies to reduce the burden of osteoarthritis: a population-based microsimulation study[J/OL]. PLoS One, 2021, 16(12): e0261017 [2022-06-23]. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0261017. DOI: 10.1371/journal.pone.0261017.
[2]
LUAN L J, EL-ANSARY D, ADAMS R, et al. Knee osteoarthritis pain and stretching exercises: a systematic review and meta-analysis[J]. Physiotherapy, 2022, 114: 16-29. DOI: 10.1016/j.physio.2021.10.001.
[3]
PERRY T A, SEGAL N A, BOWEN C, et al. Foot and ankle pain and risk of incident knee osteoarthritis and knee pain: data from the Multicentre Osteoarthritis Study[J/OL]. Osteoarthr Cartil Open, 2021, 3(4): 100210 [2022-06-23]. https://pubmed.ncbi.nlm.nih.gov/34977597/. DOI: 10.1016/j.ocarto.2021.100210.
[4]
RAFIQ M T, HAMID M S A, HAFIZ E. Short-term effects of strengthening exercises of the lower limb rehabilitation protocol on pain, stiffness, physical function, and body mass index among knee osteoarthritis participants who were overweight or obese: a clinical trial[J/OL]. Sci World J, 2021, 2021: 6672274 [2022-06-23]. https://pubmed.ncbi.nlm.nih.gov/34975349/. DOI: 10.1155/2021/6672274.
[5]
DAINESE P, WYNGAERT K V, DE MITS S, et al. Association between knee inflammation and knee pain in patients with knee osteoarthritis: a systematic review[J]. Osteoarthritis Cartilage, 2022, 30(4): 516-534. DOI: 10.1016/j.joca.2021.12.003.
[6]
TEKAYA A BEN, ROUACHED L, MAAOUI R, et al. Neuropathic pain in patients with knee osteoarthritis: relation with comorbidities and functional status[J/OL]. Curr Rheumatol Rev, 2022 [2022-06-23]. https://pubmed.ncbi.nlm.nih.gov/35638278/. DOI: 10.2174/1573397118666220527140626.
[7]
中国中西医结合学会骨伤科专业委员会. 膝骨关节炎中西医结合诊疗指南[J]. 中华医学杂志, 2018, 98(45): 3653-3658. DOI: 10.3760/cma.j.issn.0376-2491.2018.45.005.
Committee of Orthopaedics and Traumatology of Chinese Association of Traditional Chinese and Western Medicine. Guide to diagnosis and treatment of knee osteoarthritis with integrated traditional Chinese and western medicine[J]. Natl Med J China, 2018, 98(45): 3653-3658. DOI: 10.3760/cma.j.issn.0376-2491.2018.45.005
[8]
刘军, 黄和涛, 潘建科, 等. 膝骨关节炎中西医结合阶梯诊疗的发展现状及展望[J]. 广东医学, 2019, 40(9): 1189-1192. DOI: 10.13820/j.cnki.gdyx.20185817.
LIU J, HUANG H T, PAN J K, et al. The status quo and prospection of integrative therapy of western medicine and traditional Chinese medicine in the step-wise treatment of osteoarthritis at knee[J]. Guangdong Med J, 2019, 40(9): 1189-1192. DOI: 10.13820/j.cnki.gdyx.20185817.
[9]
HUANG D, LIU Y Q, LIANG L S, et al. The diagnosis and therapy of degenerative knee joint disease: expert consensus from the Chinese pain medicine panel[J/OL]. Pain Res Manag, 2018, 2018: 2010129 [2022-06-23]. https://www.hindawi.com/journals/prm/2018/2010129/. DOI: 10.1155/2018/2010129.
[10]
廖德发. 我国骨性关节炎流行病学调查现状[J]. 微创医学, 2017, 12(4): 521-524. DOI: 10.11864/j.issn.1673.2017.04.22.
LIAO D F. Epidemiological investigation of osteoarthritis in China[J]. J Minim Invasive Med, 2017, 12(4): 521-524. DOI: 10.11864/j.issn.1673.2017.04.22.
[11]
徐波, 邢润麟, 茆军, 等. 骨关节炎疼痛相关危险因素研究进展[J]. 中国现代医学杂志, 2021, 31(23): 45-48. DOI: 10.3969/j.issn.1005-8982.2021.23.008.
XU B, XING R L, MAO J, et al. Research progress on pain related risk factors of osteoarthritis[J]. China J Mod Med, 2021, 31(23): 45-48. DOI: 10.3969/j.issn.1005-8982.2021.23.008.
[12]
秦夕茹, 张立智. 骨关节炎疼痛的机制[J]. 中华全科医学, 2021, 19(6): 1001-1007. DOI: 10.16766/j.cnki.issn.1674-4152.001971.
QIN X R, ZHANG L Z. Mechanisms of osteoarthritis pain[J]. Chin J Gen Pract, 2021, 19(6): 1001-1007. DOI: 10.16766/j.cnki.issn.1674-4152.001971.
[13]
郑洁, 袁普卫, 康武林, 等. 骨性关节炎慢性疼痛的神经机制研究进展[J]. 中国疼痛医学杂志, 2020, 26(6): 447-450. DOI: 10.3969/j.issn.1006-9852.2020.06.010.
ZHENG J, YUAN P W, KANG W L, et al. Research progress on neural mechanism of chronic pain in osteoarthritis[J]. Chin J Pain Med, 2020, 26(6): 447-450. DOI: 10.3969/j.issn.1006-9852.2020.06.010.
[14]
GUELFI G, CASANO A B, MENCHETTI L, et al. A cross-talk between blood-cell neuroplasticity-related genes and environmental enrichment in working dogs[J/OL]. Sci Rep, 2019, 9(1): 6910 [2022-06-23]. https://www.nature.com/articles/s41598-019-43402-4. DOI: 10.1038/s41598-019-43402-4.
[15]
SENO M D J, ASSIS D V, GOUVEIA F, et al. The critical role of amygdala subnuclei in nociceptive and depressive-like behaviors in peripheral neuropathy[J/OL]. Sci Rep, 2018, 8(1): 13608 [2022-06-23]. https://www.nature.com/articles/s41598-018-31962-w. DOI: 10.1038/s41598-018-31962-w.
[16]
KANG B X, MA J, SHEN J, et al. Altered brain activity in end-stage knee osteoarthritis revealed by resting-state functional magnetic resonance imaging[J/OL]. Brain Behav, 2022, 12(1): e2479 [2022-06-23]. https://onlinelibrary.wiley.com/doi/10.1002/brb3.2479. DOI: 10.1002/brb3.2479.
[17]
陈怡, 余成新. 基于静息态功能磁共振成像的静态及动态功能连接分析方法研究进展[J]. 磁共振成像, 2019, 10(8): 637-640. DOI: 10.12015/issn.1674-8034.2019.08.017.
CHEN Y, YU C X. Static and dynamic functional connectivity analysis based on resting state functional magnetic resonance imaging and its progress[J]. Chin J Magn Reson Imaging, 2019, 10(8): 637-640. DOI: 10.12015/issn.1674-8034.2019.08.017.
[18]
袁悦铭, 张力, 张治国. 基于静息态功能磁共振成像的动态功能连接分析及临床应用研究进展[J]. 磁共振成像, 2018, 9(8): 579-588. DOI: 10.12015/issn.1674-8034.2018.08.005.
YUAN Y M, ZHANG L, ZHANG Z G. Research progress in dynamic functional connectivity analysis and clinical application based on resting state functional magnetic resonance imaging[J]. Chin J Magn Reson Imaging, 2018, 9(8): 579-588. DOI: 10.12015/issn.1674-8034.2018.08.005.
[19]
BARAN T M, LIN F V, GEHA P. Functional brain mapping in patients with chronic back pain shows age-related differences[J/OL]. Pain, 2022, 163(8): e917-e926 [2022-06-23]. https://journals.lww.com/pain/Abstract/2022/08000/Functional_brain_mapping_in_patients_with_chronic.10.aspx. DOI: 10.1097/j.pain.0000000000002534.
[20]
NEES F, RUTTORF M, FUCHS X, et al. Brain-behaviour correlates of habitual motivation in chronic back pain[J/OL]. Sci Rep, 2020, 10(1): 11090 [2022-06-23]. https://www.nature.com/articles/s41598-020-67386-8. DOI: 10.1038/s41598-020-67386-8.
[21]
CHENG J C, ANZOLIN A, BERRY M, et al. Dynamic functional brain connectivity underlying temporal summation of pain in fibromyalgia[J]. Arthritis Rheumatol, 2022, 74(4): 700-710. DOI: 10.1002/art.42013.
[22]
ELLINGSEN D M, BEISSNER F, MOHER ALSADY T, et al. A picture is worth a thousand words: linking fibromyalgia pain widespreadness from digital pain drawings with pain catastrophizing and brain cross-network connectivity[J]. Pain, 2021, 162(5): 1352-1363. DOI: 10.1097/j.pain.0000000000002134.
[23]
SAWADDIRUK P, PAIBOONWORACHAT S, CHATTIPAKORN N, et al. Alterations of brain activity in fibromyalgia patients[J]. J Clin Neurosci, 2017, 38: 13-22. DOI: 10.1016/j.jocn.2016.12.014.
[24]
郭雅, 李瑞阳, 卢富强, 等. 多模态功能磁共振成像在前庭性偏头痛的研究进展[J]. 磁共振成像, 2021, 12(4): 86-88. DOI: 10.12015/issn.1674-8034.2021.04.021.
GUO Y, LI R Y, LU F Q, et al. Research progress and application of multimodal functional magnetic resonance imaging in vestibular migraine[J]. Chin J Magn Reson Imaging, 2021, 12(4): 86-88. DOI: 10.12015/issn.1674-8034.2021.04.021.
[25]
刘妮, 张亚男, 吴俊辰, 等. 度中心性的静息态功能磁共振成像探讨原发性痛经患者月经期痛经的中枢机制[J]. 磁共振成像, 2021, 12(7): 29-33. DOI: 10.12015/issn.1674-8034.2021.07.006.
LIU N, ZHANG Y N, WU J C, et al. An explorative resting-state fMRI study of central mechanism in patients with primary dysmenorrhea during menstrual phase by using the method of degree centrality[J]. Chin J Magn Reson Imaging, 2021, 12(7): 29-33. DOI: 10.12015/issn.1674-8034.2021.07.006.
[26]
NANUS D E, BADOUME A, WIJESINGHE S N, et al. Synovial tissue from sites of joint pain in knee osteoarthritis patients exhibits a differential phenotype with distinct fibroblast subsets[J/OL]. EBioMedicine, 2021, 72: 103618 [2022-06-23]. https://pubmed.ncbi.nlm.nih.gov/34628351/. DOI: 10.1016/j.ebiom.2021.103618.
[27]
LEE Y, PARK Y S, CHOI N Y, et al. Proteomic analysis reveals commonly secreted proteins of mesenchymal stem cells derived from bone marrow, adipose tissue, and synovial membrane to show potential for cartilage regeneration in knee osteoarthritis[J/OL]. Stem Cells Int, 2021, 2021: 6694299 [2022-06-23]. https://pubmed.ncbi.nlm.nih.gov/34306096/. DOI: 10.1155/2021/6694299.
[28]
LIU Y C, JING J H, YU H R, et al. Expression profiles of long non-coding RNAs in the cartilage of patients with knee osteoarthritis and normal individuals[J/OL]. Exp Ther Med, 2021, 21(4): 365 [2022-06-23]. https://pubmed.ncbi.nlm.nih.gov/33732338/. DOI: 10.3892/etm.2021.9796.
[29]
WU W, BRYANT A L, HINMAN R S, et al. Walking-related knee contact forces and associations with knee pain across people with mild, moderate and severe radiographic knee osteoarthritis: a cross-sectional study[J]. Osteoarthritis Cartilage, 2022, 30(6): 832-842. DOI: 10.1016/j.joca.2022.02.619.
[30]
WANG Y F, YOU L, CHYR J, et al. Causal discovery in radiographic markers of knee osteoarthritis and prediction for knee osteoarthritis severity with attention-long short-term memory[J/OL]. Front Public Health, 2020, 8: 604654 [2022-06-23]. https://pubmed.ncbi.nlm.nih.gov/33409263/. DOI: 10.3389/fpubh.2020.604654.
[31]
SON K M, HONG J I, KIM D H, et al. Absence of pain in subjects with advanced radiographic knee osteoarthritis[J/OL]. BMC Musculoskelet Disord, 2020, 21(1): 640 [2022-06-23]. https://pubmed.ncbi.nlm.nih.gov/32993609/. DOI: 10.1186/s12891-020-03647-x.
[32]
CHEN F H, LIU H, XIA J, et al. Synovial fluid and plasma levels of milk fat globule-epidermal growth factor 8 are inversely correlated with radiographic severity of knee osteoarthritis[J]. J Int Med Res, 2019, 47(9): 4422-4430. DOI: 10.1177/0300060519862460.
[33]
GERVAIS-HUPÉ J, POLLICE J, SADI J, et al. Validity of the central sensitization inventory with measures of sensitization in people with knee osteoarthritis[J]. Clin Rheumatol, 2018, 37(11): 3125-3132. DOI: 10.1007/s10067-018-4279-8.
[34]
ROBY N U, PACKHAM T L, MACDERMID J C, et al. Validity of the Central Sensitization Inventory (CSI) through Rasch analysis in patients with knee osteoarthritis[J]. Clin Rheumatol, 2022, 41(10): 3159-3168. DOI: 10.1007/s10067-022-06248-2.
[35]
SONI A, WANIGASEKERA V, MEZUE M, et al. Central sensitization in knee osteoarthritis: relating presurgical brainstem neuroimaging and PainDETECT-based patient stratification to arthroplasty outcome[J]. Arthritis Rheumatol, 2019, 71(4): 550-560. DOI: 10.1002/art.40749.
[36]
石爱军, 李春雷, 吴媛, 等. 膝骨性关节炎患者慢性疼痛静息态脑功能局部一致性研究[J]. 局解手术学杂志, 2017, 26(6): 419-422. DOI: 10.11659/jjssx.12E016064.
SHI A J, LI C L, WU Y, et al. Regional homogeneity of resting-state brain activity in knee osteoarthritis patients with chronic pain[J]. J Reg Anat Oper Surg, 2017, 26(6): 419-422. DOI: 10.11659/jjssx.12E016064.
[37]
刘涛. 膝关节骨性关节炎慢性疼痛的脑静息态功能磁共振成像研究[D]. 延安: 延安大学, 2020.
LIU T. A study of resting-state functional magnetic resonance imaging (RS-fmri) for chronic pain in knee osteoarthritis[D]. Yan'an: Yan'an University, 2020.
[38]
LIAO X, MAO C P, WANG Y, et al. Brain gray matter alterations in Chinese patients with chronic knee osteoarthritis pain based on voxel-based morphometry[J/OL]. Medicine (Baltimore), 2018, 97(12): e0145 [2022-06-23]. https://doi.org/10.1097/MD.0000000000010145. DOI: 10.1097/MD.0000000000010145.
[39]
GUO H, WANG Y Q, QIU L H, et al. Structural and functional abnormalities in knee osteoarthritis pain revealed with multimodal magnetic resonance imaging[J/OL]. Front Hum Neurosci, 2021, 15: 783355 [2022-06-23]. https://pubmed.ncbi.nlm.nih.gov/34912202/. DOI: 10.3389/fnhum.2021.783355.
[40]
SIMIS M, IMAMURA M, DE MELO P S, et al. Increased motor cortex inhibition as a marker of compensation to chronic pain in knee osteoarthritis[J/OL]. Sci Rep, 2021, 11(1): 24011 [2022-06-23]. https://pubmed.ncbi.nlm.nih.gov/34907209/. DOI: 10.1038/s41598-021-03281-0.
[41]
胡颖, 王丽嘉, 聂生东. 静息态功能磁共振成像的脑功能分区综述[J]. 中国图象图形学报, 2017, 22(10): 1325-1334. DOI: 10.11834/jig.170081.
HU Y, WANG L J, NIE S D. Review on brain functional parcellation based on resting-state functional magnetic resonance imaging data[J]. J Image Graph, 2017, 22(10): 1325-1334. DOI: 10.11834/jig.170081.
[42]
HU X F, ZHANG J Q, JIANG X M, et al. Amplitude of low-frequency oscillations in Parkinson's disease: a 2-year longitudinal resting-state functional magnetic resonance imaging study[J]. Chin Med J (Engl), 2015, 128(5): 593-601. DOI: 10.4103/0366-6999.151652.
[43]
LV H, WANG Z, TONG E, et al. Resting-state functional MRI: everything that nonexperts have always wanted to know[J]. AJNR Am J Neuroradiol, 2018, 39(8): 1390-1399. DOI: 10.3174/ajnr.A5527.
[44]
JIA X Z, SUN J W, JI G J, et al. Percent amplitude of fluctuation: a simple measure for resting-state fMRI signal at single voxel level[J/OL]. PLoS One, 2020, 15(1): e0227021 [2022-06-23]. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0227021. DOI: 10.1371/journal.pone.0227021.
[45]
PUJOL J, MARTÍNEZ-VILAVELLA G, LLORENTE-ONAINDIA J, et al. Brain imaging of pain sensitization in patients with knee osteoarthritis[J]. Pain, 2017, 158(9): 1831-1838. DOI: 10.1097/j.pain.0000000000000985.
[46]
BALIKI M N, GEHA P Y, JABAKHANJI R, et al. A preliminary fMRI study of analgesic treatment in chronic back pain and knee osteoarthritis[J/OL]. Mol Pain, 2008, 4: 47 [2022-06-23]. https://journals.sagepub.com/doi/10.1186/1744-8069-4-47?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%20%200pubmed. DOI: 10.1186/1744-8069-4-47.
[47]
张海波, 王骏, 姚晓英. 慢性疼痛患者基于体素的磁共振形态学及脑静息态功能磁共振研究[J]. 赣南医学院学报, 2014, 34(1): 70-72. DOI: 10.3969/j.issn.1001-5779.2014.01.026.
ZHANG H B, WANG J, YAO X Y. The research of chronic pain patient with resting state functional MRI and coxel based morphometry[J]. J Gannan Med Univ, 2014, 34(1): 70-72. DOI: 10.3969/j.issn.1001-5779.2014.01.026.
[48]
肖阳, 刘娇, 胡坤, 等. 膝骨性关节炎患者伏隔核功能连接特征的fMRI研究[J]. 康复学报, 2020, 30(1): 40-45. DOI: 10.3724/SP.J.1329.2020.01009.
XIAO Y, LIU J, HU K, et al. fMRI study on the functional connectivity of nucleus accumbens in patients with knee osteoarthritis[J]. Rehabil Med, 2020, 30(1): 40-45. DOI: 10.3724/SP.J.1329.2020.01009.
[49]
COTTAM W J, IWABUCHI S J, DRABEK M M, et al. Altered connectivity of the right anterior insula drives the pain connectome changes in chronic knee osteoarthritis[J]. Pain, 2018, 159(5): 929-938. DOI: 10.1097/j.pain.0000000000001209.
[50]
王欣, 王坤, 鲍正远, 等. 骨性膝关节炎病人脑功能MRI改变与手术前后疼痛的相关性研究[J]. 国际医学放射学杂志, 2019, 42(3): 255-259, 284. DOI: 10.19300/j.2019.L6400.
WANG X, WANG K, BAO Z Y, et al. The correlation between altered brain fMRI and pain perception before and after operation in patients with knee osteoarthritis[J]. Int J Med Radiol, 2019, 42(3): 255-259, 284. DOI: 10.19300/j.2019.L6400.
[51]
和梦鑫, 平亮亮, 许秀峰. 基于图论的复杂脑网络分析在精神疾病中的研究进展[J]. 昆明医科大学学报, 2019, 40(5): 129-134. DOI: 10.3969/j.issn.1003-4706.2019.05.025.
HE M X, PING L L, XU X F. Research Progress of Complex brain Networks based on Graph Theory in Mental Diseases[J]. J Kunming Med Univ, 2019, 40(5): 129-134. DOI: 10.3969/j.issn.1003-4706.2019.05.025.
[52]
RIVERA-ROMANO L S, JUÁREZ-CANO G, HERNÁNDEZ-LEMUS E, et al. Structure of communities in semantic networks of biomedical research on disparities in health and sexism[J]. Biomedica, 2020, 40(4): 702-721. DOI: 10.7705/biomedica.5182.
[53]
谢洪武, 罗天友, 陈日新, 等. 慢性疼痛患者静息态脑功能磁共振的默认网络研究[J]. 生命科学研究, 2011, 15(6): 502-506. DOI: 10.16605/j.cnki.1007-7847.2011.06.005.
XIE H W, LUO T Y, CHEN R X, et al. Study of default-mode network in fMRI in patients with chronic pain[J]. Life Sci Res, 2011, 15(6): 502-506. DOI: 10.16605/j.cnki.1007-7847.2011.06.005.
[54]
BALIKI M N, MANSOUR A R, BARIA A T, et al. Functional reorganization of the default mode network across chronic pain conditions[J/OL]. PLoS One, 2014, 9(9): e106133 [2022-06-23]. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0106133. DOI: 10.1371/journal.pone.0106133.
[55]
HIRAMATSU T, NAKANISHI K, YOSHIMURA S, et al. The dorsolateral prefrontal network is involved in pain perception in knee osteoarthritis patients[J]. Neurosci Lett, 2014, 581: 109-114. DOI: 10.1016/j.neulet.2014.08.027.
[56]
DAVIS K D, FLOR H, GREELY H T, et al. Brain imaging tests for chronic pain: medical, legal and ethical issues and recommendations[J]. Nat Rev Neurol, 2017, 13(10): 624-638. DOI: 10.1038/nrneurol.2017.122.

上一篇 深部浸润型子宫内膜异位症的MRI诊断现状及其研究进展
下一篇 磁共振胰胆管成像扫描技术及临床应用中国专家共识
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2