分享:
分享到微信朋友圈
X
技术研究
基于压缩感知的全脑三维同时非增强血管成像和斑块内出血成像研究
张煜堃 张浩南 常佩佩 刘娜 罗贺丹 胡帅 王楠 宋清伟 苗延巍

Cite this article as: Zhang YK, Zhang HN, Chang PP, et al. An imaging study of three-dimensional simultaneous non-contrast angiography and intraplaque hemorrhage of whole brain based on compressed sensing[J]. Chin J Magn Reson Imaging, 2022, 13(12): 124-129.本文引用格式:张煜堃, 张浩南, 常佩佩, 等. 基于压缩感知的全脑三维同时非增强血管成像和斑块内出血成像研究[J]. 磁共振成像, 2022, 13(12): 124-129. DOI:10.12015/issn.1674-8034.2022.12.021.


[摘要] 目的 采用不同加速因子(accelerated factors, AF)优化头部基于压缩感知的三维同时非增强血管成像和斑块内出血成像(three-dimensional simultaneous non-contrast angiography and intraplaque hemorrhage based on compressed sensing, 3D CS SNAP),以期在短时间内获得全脑覆盖的高质量血管成像(magnetic resonance angiography, MRA)和血管壁图像。材料与方法 前瞻性招募30名健康志愿者,10名志愿者进行头部三维同时非增强血管成像和斑块内出血成像(three-dimensional simultaneous non-contrast angiography and intraplaque hemorrhage, 3D SNAP)参数的预扫描及选择;20名志愿者在优化后的预扫描序列基础上,行头部的常规3D SNAP以及不同AF(2、2.5、3、4、5)的3D CS SNAP序列扫描。两名影像科医生在原始图像上划定血管腔、血管壁、邻近白质的感兴趣区,测量信号强度和标准差,并计算血管腔的信噪比(signal to noise ratio, SNR)、对比噪声比(contrast to noise ratio, CNR)、血管壁的对比组织比(contrast-to-tissue ratio, CTR)和CTR效率(CTR efficiency, CTReff);同时,对不同AF的3D CS SNAP图像质量进行主观评分。使用Kappa检验和组内相关系数(intraclass correlation coefficient, ICC)分析两名观察者的组间一致性;对比分析不同AF间测量数据以及主观评分的差异。结果 两名观察者图像质量主客观评价一致性良好(主观评分Kappa:0.568~0.884,数据测量ICC:0.602~0.968)。当CS AF≥4时,血管腔SNR、CNR及主观评价较常规3D SNAP的差异有统计学意义(P<0.05);当CS AF=2.5、3、4、5时,血管壁CTReff与常规3D SNAP差异均有统计学意义(P<0.05)。结论 3D CS SNAP技术可以在相对更短的时间里获得全脑MRA和血管壁图像,一次扫描同时提供血管形态和血管壁斑块的诊断信息。推荐AF为2应用于轻中症患者,AF为3应用于重症患者。
[Abstract] Objective To optimize three-dimensional simultaneous non-contrast angiography and intraplaque hemorrhage (3D SNAP) based on compressed sensing (CS 3D SNAP), we performed different acceleration factors (AF) to obtain high-quality magnetic resonance angiography (MRA) and vascular wall images capable of whole brain coverage in a short time.Material and Methods: Thirty healthy volunteers were prospectively recruited in this study. Ten volunteers were performed the pre-scan for selecting a precise head three-dimensional simultaneous non-contrast angiography and intraplaque hemorrhage (3D SNAP) parameter. Twenty volunteers were scanned with conventional 3D SNAP and CS 3D SNAP (AF=2, 2.5, 3, 4, or 5) on the basis of the optimized pre-scan sequence. Two radiologists delineated the region of interest of vascular lumen, vascular wall, and adjacent white matter on the original images, then measured the signal intensity and the standard deviation. The signal to noise ratio (SNR) and the contrast to noise ratio (CNR) of vascular lumen, the contrast-to-tissue ratio (CTR) and the CTR efficiency (CTReff) of the vascular wall were further calculated. The image quality of each dataset were scored subjectively by two radiologists. The consistency of measurements and subjective scores of the two observers were analyzed using Kappa and intra-class correlation coefficient (ICC) test. Compare and analyze the differences in measurement parameters and subjective scores between different AF.Results The measured data and subjective scores of the two observers were in good consistent (Kappa: 0.568-0.884, ICC: 0.602-0.968). When CS AF is greater than or equal to 4, the SNR, CNR of vascular lumen and subjective scores were significantly different from those of conventional 3D SNAP (P<0.05). When CS AF is equal to 2.5, 3, 4, or 5, the CTReff of vascular wall were significantly different compared with conventional 3D SNAP (P<0.05).Conclusions 3D CS SNAP can obtain whole cerebrovascular MRA and vascular wall images in a relatively short period of time, and a single scan provides diagnostic information on both vascular morphology and plaque in the vessel wall. AF of 2 is recommended for mild and moderate disease patients and AF of 3 is recommended for critical patients.
[关键词] 磁共振成像;压缩感知;三维同时非增强血管成像和斑块内出血成像;斑块内出血;磁共振血管成像;高分辨血管壁磁共振成像
[Keywords] magnetic resonance imaging;compressed sensing;three-dimensional simultaneous non-contrast angiography and intraplaque hemorrhage;intraplaque hemorrhage;magnetic resonance angiography;high resolution vessel wall magnetic resonance imaging

张煜堃    张浩南    常佩佩    刘娜    罗贺丹    胡帅    王楠    宋清伟    苗延巍 *  

大连医科大学附属第一医院放射科,大连 116011

苗延巍,E-mail:ywmiao716@163.com

作者利益冲突声明:全体作者均声明无利益冲突。


基金项目: 大连市科技创新基金计划 2020JJ7SN075
收稿日期:2022-05-16
接受日期:2022-11-29
中图分类号:R445.2  R743 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2022.12.021
本文引用格式:张煜堃, 张浩南, 常佩佩, 等. 基于压缩感知的全脑三维同时非增强血管成像和斑块内出血成像研究[J]. 磁共振成像, 2022, 13(12): 124-129. DOI:10.12015/issn.1674-8034.2022.12.021.

       《颅内MR血管壁成像技术与应用中国专家共识》指出在中国约46.6%的缺血性卒中患者由颅内动脉狭窄造成,其主要病因包括动脉粥样硬化、夹层、血管炎、烟雾病。单纯利用传统的CT血管造影、MR血管成像(magnetic resonance angiography, MRA)等针对血管的成像手段,无法准确判断血管壁本身的情况及其病理学特征的相关信息。目前,高分辨血管壁磁共振成像(high resolution vessel wall magnetic resonance imaging, HRVW MRI)被认为是评估动脉管壁结构和斑块特征的理想工具[1, 2]。在HRVW MRI众多序列中,同时非增强血管成像和斑块内出血成像(simultaneous non-contrast angiography and intraplaque hemorrhage, SNAP)具有同时获得固定多对比图像集的优势,适用于病变范围较长且走行曲折的头颈部血管[3, 4, 5]。但是在头部SNAP检查时,受扫描时间的限制,扫描层数通常较少[4,6, 7, 8],难以覆盖全脑,所提供的诊断信息有限,容易遗漏病变。

       压缩感知(compressed sensing, CS)理论因其能够从低于Nyquist频率采样的数据中恢复图像而不影响图像质量,受到广泛关注。如果底层的图像在像素或变换域中显示出稀疏性,那么图像可以从一个随机的欠采样数据集恢复,有效缩短信号采集时间[9, 10]。近年来,部分研究已经将CS应用于黑血序列中[11, 12],但尚无将CS与头部3D SNAP结合的研究。本研究采用不同加速因子(accelerated factor, AF)对头部进行基于CS的3D SNAP成像(CS 3D SNAP),以期在短时间内获得能够全脑覆盖的高质量MRA和血管壁图像,为临床提供更丰富和全面的脑血管诊断信息。同时,选择适用于不同疾病状态的脑血管病患者的最佳AF,为患者提供舒适可靠的MR检查。

1 材料与方法

1.1 MRI检查

       前瞻性地招募2021年12月至2022年4月在大连医科大学附属第一医院行头部MRI检查的30名健康志愿者,男13名,女17名,年龄(43.33±18.76)岁。纳入标准:(1)成人;(2)从未被诊断出患有任何中枢神经系统疾病以及任何心血管、代谢疾病并且从未遭受过任何创伤。排除标准:(1)患有脑部疾病,如脑出血、大面积脑梗死、脑血管畸形、颅内动脉瘤、烟雾病、脑肿瘤、颅内感染等;(2)MR图像质量欠佳无法定量分析。

       志愿者均在Philips Ingenia CX 3.0 T MRI(Philips Healthcare,Best,the Netherlands)设备上采用头部32通道线圈行MRI检查。首先,随机挑选10名志愿者[男4名,女6名,年龄(60.8±13.21)岁]进行预扫描,序列包括三种不同参数(组1、组2、组3)的头部3D SNAP(表1图1[6, 7, 8],并通过比较获得优化序列。然后,其余20名志愿者[男9名,女11名,年龄(34.6±14.55)岁]在优化的3D SNAP序列基础上,进一步行不同AF(包括2、2.5、3、4、5)的头部3D CS SNAP检查,各序列扫描参数见表2表2中未列出的参数与表1中组1的参数相同。本研究遵守《赫尔辛基宣言》,并经本院伦理委员会批准(批准文号:YJ-KS-KY-2022-97),受试者均签署了知情同意书。

图1  女,51岁,健康志愿者。3种不同扫描参数3D SNAP的MRA图(1A~1C)和原始图(1D~1F)。3D SNAP:三维同时非增强血管成像和斑块内出血成像;MRA:磁共振血管成像。
Fig. 1  Female, 51 years old, healthy volunteer. The MRA (1A-1C) and original images (1D-1F) of 3D SNAP for three different parameters obtained by the same volunteer. 3D SNAP: three-dimensional simultaneous non-contrast angiography and intraplaque hemorrhage; MRA: magnetic resonance angiography.
表1  不同参数的3D SNAP序列
Tab. 1  3D SNAP sequences with different parameters
表2  不同AF的3D CS SNAP序列参数
Tab. 2  3D CS SNAP sequence parameters for different AF

1.2 数据测量及主观分析

       将扫描所得图像传至ISP工作站(Philips,IntelliSpace Portall Version 9.0),由从事MRI工作4年的影像主管技师1和工作6年的影像主治医师2分别对图像质量进行主客观评估。将原始图像利用最小密度投影法(minimum density projection, MinIP)重组成冠、轴、矢图像(图2A2C)。两名观察者对同一参数/同一AF的3D SNAP血管重建图和原始图分别评分后取平均值[11,13]表3)。

       分别在3D SNAP原始图上的左侧大脑中动脉M1段管腔和管壁、脑桥以及同层邻近颞叶白质勾画感兴趣区(region of interest, ROI),测量其信号强度(signal intensity, SI)和标准差(standard deviation, SD)(图2D2E)。动脉管腔的ROI大小为10~15 mm2,脑桥和脑白质ROI大小30~35 mm2;血管壁ROI为1像素,沿管壁测量5个,取其平均值。进一步计算动脉管腔和脑桥的信噪比(signal to noise ratio, SNR)和对比噪声比(contrast to noise ratio, CNR)[14],动脉管壁的对比组织比(contrast-to-tissue ratio, CTR)和CTR效率(CTR efficiency, CTReff),CTReff用于比较不同AF间CTR值与扫描时间差异之间的关系[12]。见公式(1)~(4)。

       其中,SLTH为成像层面厚度(mm),TASLICE为每层成像时间(min)。

表3  3D CS SNAP的主观评分标准
Tab. 3  Subjective scoring criteria for 3D CS SNAP

1.3 统计学分析

       使用统计软件包SPSS 25.0对所有数据进行分析。计量资料使用均值±标准差描述。使用Kappa检验、ICC分别分析两观察者主客观分析的一致性(0.75~1代表一致性很好,0.5~0.74代表一致性较好)。若一致性良好,选择高年资主治医师2数据资料进行后续分析。使用Friedman检验不同参数间SNR、CNR、CTR和CTReff以及主观评分的差异性。若差异有统计学意义,进一步使用LSD进行两两比较。P<0.05认为各组间差异具有统计学意义。

图2  3D SNAP的MRA重建图及ROI设置示意图。图2A~2C为AF=3时3D CS SNAP原始图像经过MinIP后重建成的冠、轴、矢图像。图2D为在选择最优参数时在3D SNAP原始图上勾画的脑桥、血管腔和大脑白质的ROI(绿圈)。图2E为在优化AF时在3D CS SNAP原始图像上勾画的大脑中动脉血管壁上5个1像素大小的ROI(红叉)以及血管腔和大脑白质的ROI(红圈)。3D SNAP:三维同时非增强血管成像和斑块内出血成像;MRA:磁共振血管成像;ROI:感兴趣区;AF:加速因子;CS:压缩感知;MinIP:最小密度投影法。
Fig. 2  The MRA reconstruction images and ROI setting images of 3D SNAP. 2A-2C shows coronal, axial and sagittal images reconstructed by the original images of 3D CS SNAP with AF=3 using MinIP. 2D shows the ROI of the pontine, vascular lumen and brain white matter (green circle) outlined on the original imges of 3D SNAPWhen on the original images of 3D SNAP when selecting optimal parameter. 2E shows the five 1-pixel-sized ROI on the vascular wall of the middle cerebral artery (red cross) and the ROI of the vascular lumen and brain white matter (red circle) sketched on the original images of 3D CS SNAP when optimizing AF.3D SNAP: three-dimensional simultaneous non-contrast angiography and intraplaque hemorrhage; MRA: magnetic resonance angiography; ROI: region of interest; AF: accelerated factor; CS: compressed sensing; MinIP: minimum density projection.

2 结果

2.1 一致性检验

       两名观察者间测量数据和主观评分具有良好的一致性(主观评分Kappa:0.568~0.884,数据测量ICC:0.602~0.968)。其中部分3D CS SNAP序列的血管壁的主客观评价一致性较低(Kappa<0.6,ICC<0.75),这可能是由于血管壁的解剖结构精细,两名观察者在评价和测量时容易出现误差导致。选择影像医师2的测量数据和主观评分进行后续分析。

2.2 头部3D SNAP预试验结果

       Friedman检验显示3组间SNR、CNR及主观评分差异有统计学意义(P<0.05)。两两比较显示,组1的SNR、CNR值以及主观评价明显高于组2、组3,差异有统计学意义(P<0.05),而组2、组3间差异无统计学意义(P>0.05,图3)。基于预试验结果,本研究选择组1参数进行后续的研究。

图3  不同参数3D SNAP预试验组间比较箱型图。*代表P<0.05,**代表P<0.001。3D SNAP:三维同时非增强血管成像和斑块内出血成像;SNR:信噪比;CNR:对比噪声比;组1、组2、组3分别为三种不同参数3D SNAP序列。
Fig. 3  The box diagrams of comparison among 3D SNAP groups with different parameters in pre-experimental. * representative P<0.05, ** representative P<0.001. 3D SNAP: three-dimensional simultaneous non-contrast angiography and intraplaque hemorrhage; SNR: signal to noise ratio; CNR: contrast to noise ratio.Group 1, group 2 and group 3 are 3D SNAP sequences with three different parameters, respectively

2.3 不同AF间血管腔的SNR、CNR及主观评分的差异

       Friedman检验显示,不同AF之间血管腔SNR、CNR及主观评分差异具有统计学意义(P<0.05,表4)。进一步两两比较显示,当CS=4时,血管腔SNR、CNR及主观评价较常规序列有差异(P<0.05,图5)。这一结果表明当AF=3时,3D CS SNAP图能在1 min 59 s内获得图像质量相当的全脑图像集,时间相对于常规序列缩短了29%,并且Z轴覆盖范围接近其2倍(图4)。

图4  男,34岁,健康志愿者。不同AF的3D CS SNAP的MRA图(4A~4F)和原始图(4G~4L),AF分别为0、2、2.5、3、4、5。4A~4F上随着AF的增加背景噪声在不断增加,但是整体血管腔完整性和末梢血管的显示程度基本相似。4G~4L中在4K和4L时左侧大脑中动脉部分血管壁模糊欠完整。3D CS SNAP:基于压缩感知的三维同时非增强血管成像和斑块内出血成像;MRA:磁共振血管成像;AF:加速因子。
Fig. 4  Male, 34 years old, healthy volunteer. MRA (4A-4F) and original images (4G-4L) of the 3D CS SNAP for different AF of the same volunteers, and the AF are 0, 2, 2.5, 3, 4, and 5, respectively. 4A-4F: the background noise increases as AF increases, but the overall luminal integrity and degree of display of peripheral blood vessel are substantially similar. The blood wall of the left middle cerebral artery is blurred and incomplete in 4K and 4L. 3D CS SNAP: three-dimensional simultaneous non-contrast angiography and intraplaque hemorrhage based on compressed sensing; MRA: magnetic resonance angiography; AF: accelerated factor.
图5  不同AF序列与常规序列血管腔的SNR和CNR、血管壁CTR和CTReff及主观评分的差异性结果箱型图。*代表P<0.05,**代表P<0.001。AF:加速因子;SNR:信噪比; CNR:对比噪声比;CTR:对比组织比;CTReff:CTR效率。
Fig. 5  The box diagrams for differences between different AF sequences and conventional sequence in SNR and CNR of vascular lumen, CTR and CTReff of vascular walls, and subjective scores. * representative P<0.05, ** representative P<0.001. AF: accelerated factor; SNR: signal to noise ratio; CNR: contrast to noise ratio; CTR: contrast-to-tissue ratio; CTReff: CTR efficiency.
表4  不同AF间主客观分析的差异
Tab. 4  Differences in subjective and objective analysis among different AF

2.4 不同AF间血管壁的CTR和CTReff差异

       Friedman检验显示,不同AF之间CTR差异没有统计学意义(P=0.068),CTReff差异具有统计学意义(P<0.05,表4)。两两比较显示,当CS AF=2.5、3、4、5时,CTReff与常规序列差异均有统计学意义(P<0.05)(图5)。这一结果表明不同AF序列的图像与常规序列图像的血管壁显示效果相当,并且即使扫描层数增加两倍,在CS AF=2之后随着AF的增加3D CS SNAP的时间效率逐步提升。

3 讨论

       本研究利用不同AF对头部进行3D CS SNAP成像,结果发现,与未施加AF的常规序列图像相比,不同AF序列的图像表现出了相当的血液质子抑制效率,管腔轮廓和内外血管壁边界也与常规序列图像相当。经过主客观图像质量分析,本研究发现3D CS SNAP在AF=2时与常规SNAP图像质量相当覆盖范围更大但扫描时间未能缩短,适用于状态好的血管病患者;当AF=3时在三者间取得了平衡,能在较短的时间(1 min 59 s,缩短29%)内得到满足诊断需求的全脑动脉图像,可以用于配合较差的重症患者;而当AF=4或5时,图像质量不再令人信服。考虑到血管壁和血管腔的清晰显示以及检查时间,推荐AF=3为临床中常用设置。

3.1 3D SNAP 技术的相关研究及优越性

       临床上通常需要进行多序列组合扫描才能完成对颅内血管的全面评估,导致扫描时间的延长,临床应用受限[15]。SNAP是由层面选择的相位敏感反转恢复序列衍变而来[16]。通过相位敏感重组,SNAP采集后可获得黑色血液校正图像和血液造影图像,这两幅图像总是自然配准,不需要额外的配准方法[3, 17]。多项研究已经证明SNAP对于动脉斑块内出血检出的敏感性高于其他血管成像技术[18, 19, 20, 21];与时间飞跃法磁共振血管成像(time of flight magnetic resonance angiography, TOF MRA)相比,SNAP对颅内动脉狭窄的检出效能相似并可以检测到更多的小动脉分支[4,8,22]。这些优势使得SNAP能够在一次MR扫描中获得动脉形态与管壁信息,更全面解读血管疾病,进行诊断。

3.2 3D CS SNAP 技术的临床价值及可行性

       但是,现有的头部3D SNAP序列受扫描时间的限制导致扫描层数较少,不足以覆盖全脑,本研究经预试验优化的3D SNAP层数仅为50,Z轴覆盖为50 mm,基底动脉近段及大脑中动脉的分支无法完全显示,可能影响诊断。若将其层数扩大两倍至96,扫描时间会长达5 min 12 s,过长的扫描时间使脑血管疾病患者难以配合,加大扫描风险和图像伪影的出现。CS在保障图像质量的前提下达到缩短扫描时间的目的[23, 24],已经广泛应用于颅脑、体部等MR检查中[25, 26, 27, 28],如Ding等[13]通过研究确定了不同AF的CS TOF MRA所适用的不同检查人群范围以及Zhu等[28]的研究表明基于CS的导航触发磁共振胰胆管造影对胆胰腺导管相关病理表现出更高的诊断准确性。CS同样适用于3D SNAP技术原理[29, 30],黑血成像中血管壁相对于其他部位对比度较高,所占比例较小,因此可以认为血管壁成像在像素域中是稀疏的[12],并且SNAP的MRA图观察目标也比较单一,仅为低黑信号的血管,很好地满足了CS原理的前提条件。在本研究中,不同AF的3D CS SNAP与常规序列相比,血管壁CTR差异均无统计学意义,很好地说明了两者的适用性。

3.3 本研究的局限性

       作为前瞻性研究,本研究存在一些局限性。首先,样本量相对不足,未来需要将3D CS SNAP与MRA以及血管壁成像技术在更多样本中进行比较,以证明其稳定性和临床适用性。其次,本研究的结果针对的是健康志愿者,对于有血管壁病变的患者是否仍适用,仍需验证。第三,本研究为单中心研究,而3D CS SNAP的序列优化需要在多中心进行评估[13]。最后,在SNAP轴位图勾画血管腔、血管壁ROI时,存在人为、主观因素的影响,尤其在管壁的研究中,寻找更标准、客观的测量方法是下一步工作的一个重点。

       综上所述,头部3D CS SNAP在保证了图像质量的前提下,具有了覆盖范围广、同时获得固定多对比图像集、相对扫描时间短的优势。在AF=2时可以获得与常规序列相当甚至更好的图像质量但扫描时间较长(2 min 57 s),适用于配合度好的轻中症患者;在AF=3时平衡了图像质量和扫描获取时间(1 min 59 s),适用于配合较差的重症患者。该优化序列有潜力被整合到当前的多重血液对比成像方案中。

[1]
Lehman VT, Brinjikji W, Kallmes DF, et al. Clinical interpretation of high-resolution vessel wall MRI of intracranial arterial diseases[J/OL]. Br J Radiol, 2016, 89(1067): 20160496 [2022-05-15] https://doi.org/10.1259/bjr.20160496. DOI: 10.1259/bjr.20160496.
[2]
Li M, le WJ, Tao XF, et al. Advantage in bright-blood and black-blood magnetic resonance imaging with high-resolution for analysis of carotid atherosclerotic plaques[J]. Chin Med J (Engl), 2015, 128(18): 2478-2484. DOI: 10.4103/0366-6999.164933.
[3]
Chen S, Zhao HL, Li JF, et al. Evaluation of carotid atherosclerotic plaque surface characteristics utilizing simultaneous noncontrast angiography and intraplaque hemorrhage (SNAP) technique[J]. J Magn Reson Imaging, 2018, 47(3): 634-639. DOI: 10.1002/jmri.25815.
[4]
Wang JN, Guan MB, Yamada K, et al. In vivo validation of simultaneous non-contrast angiography and intraPlaque hemorrhage (SNAP) magnetic resonance angiography: an intracranial artery study[J/OL]. PLoS One, 2016, 11(2): e0149130 [2022-09-01].https://doi.org/10.1371/journal.pone.0149130. DOI: 10.1371/journal.pone.0149130.
[5]
Wang JN, Börnert P, Zhao HL, et al. Simultaneous noncontrast angiography and intraplaque hemorrhage (SNAP) imaging for carotid atherosclerotic disease evaluation[J]. Magn Reson Med, 2013, 69(2): 337-345. DOI: 10.1002/mrm.24254.
[6]
Gould A, Chen ZS, Geleri DB, et al. Vessel length on snap mra and tof mra is a potential imaging biomarker for brain blood flow[J]. Magn Reson Imaging, 2021, 79: 20-27. DOI: 10.1016/j.mri.2021.02.012.
[7]
Xiong YH, Ji LX, He L, et al. Effects of levodopa therapy on cerebral arteries and perfusion in Parkinson's disease patients[J]. J Magn Reson Imaging, 2022, 55(3): 943-953. DOI: 10.1002/jmri.27903.
[8]
Zhang Q, Chen ZS, Chen S, et al. Angiographic contrast mechanism comparison between Simultaneous Non-contrast Angiography and intraPlaque hemorrhage (SNAP) sequence and Time of Flight (TOF) sequence for intracranial artery[J]. Magn Reson Imaging, 2020, 66: 199-207. DOI: 10.1016/j.mri.2019.09.001.
[9]
Lustig M, Donoho D, Pauly JM. Sparse MRI: the application of compressed sensing for rapid MR imaging[J]. Magn Reson Med, 2007, 58(6): 1182-1195. DOI: 10.1002/mrm.21391.
[10]
Gamper U, Boesiger P, Kozerke S. Compressed sensing in dynamic MRI[J]. Magn Reson Med, 2008, 59(2): 365-373. DOI: 10.1002/mrm.21477.
[11]
Zhu CC, Tian B, Chen LG, et al. Accelerated whole brain intracranial vessel wall imaging using black blood fast spin echo with compressed sensing (CS-SPACE)[J]. MAGMA, 2018, 31(3): 457-467. DOI: 10.1007/s10334-017-0667-3.
[12]
Li B, Dong L, Chen B, et al. Turbo fast three-dimensional carotid artery black-blood MRI by combining three-dimensional MERGE sequence with compressed sensing[J]. Magn Reson Med, 2013, 70(5): 1347-1352. DOI: 10.1002/mrm.24579.
[13]
Ding J, Duan Y, Zhuo Z, et al. Acceleration of brain TOF-MRA with compressed sensitivity encoding: a multicenter clinical study[J]. AJNR Am J Neuroradiol, 2021, 42(7): 1208-1215. DOI: 10.3174/ajnr.A7091.
[14]
张晓东, 朱丽娜, 马帅, 等. 压缩感知技术在头MRA的初步应用探索[J]. 放射学实践, 2018, 33(3): 252-255. DOI: 10.13609/j.cnki.1000-0313.2018.03.005.
Zhang XD, Zhu LN, Ma S, et al. A preliminary study of compressed sensing techniques in cerebral MRA[J]. Radiol Pract, 2018, 33(3): 252-255. DOI: 10.13609/j.cnki.1000-0313.2018.03.005.
[15]
Sun JL, Liu GQ, Zhang DY, et al. The longitudinal distribution and stability of curved basilar artery plaque: a study based on HR-MRI[J]. J Atheroscler Thromb, 2021, 28(12): 1333-1339. DOI: 10.5551/jat.62448.
[16]
Wang JN, Ferguson MS, Balu N, et al. Improved carotid intraplaque hemorrhage imaging using a slab-selective phase-sensitive inversion-recovery (SPI) sequence[J]. Magn Reson Med, 2010, 64(5): 1332-1340. DOI: 10.1002/mrm.22539.
[17]
Chen S, Ning J, Zhao XH, et al. Fast simultaneous noncontrast angiography and intraplaque hemorrhage (fSNAP) sequence for carotid artery imaging[J]. Magn Reson Med, 2017, 77(2): 753-758. DOI: 10.1002/mrm.26111.
[18]
Li DY, Zhao HL, Chen XY, et al. Identification of intraplaque haemorrhage in carotid artery by simultaneous non-contrast angiography and intraPlaque haemorrhage (SNAP) imaging: a magnetic resonance vessel wall imaging study[J]. Eur Radiol, 2018, 28(4): 1681-1686. DOI: 10.1007/s00330-017-5096-1.
[19]
Liu HN, Sun J, Hippe DS, et al. Improved carotid lumen delineation on non-contrast MR angiography using SNAP (Simultaneous Non-Contrast Angiography and Intraplaque Hemorrhage) imaging[J]. Magn Reson Imaging, 2019, 62: 87-93. DOI: 10.1016/j.mri.2019.06.012.
[20]
Li DY, Qiao HY, Han YJ, et al. Histological validation of simultaneous non-contrast angiography and intraplaque hemorrhage imaging (SNAP) for characterizing carotid intraplaque hemorrhage[J]. Eur Radiol, 2021, 31(5): 3106-3115. DOI: 10.1007/s00330-020-07352-0.
[21]
王康, 陈欢, 马景旭, 等. 磁共振SNAP序列对颈动脉粥样硬化斑块的评估[J]. 影像诊断与介入放射学, 2018, 27(1): 40-46. DOI: 10.3969/j.issn.1005-8001.2018.01.007.
Wang K, Chen H, Ma JX, et al. Evaluation of magnetic resonance SNAP protocol in the diagnosis of carotid atherosclerotic plaque[J]. Diagn Imaging Interv Radiol, 2018, 27(1): 40-46. DOI: 10.3969/j.issn.1005-8001.2018.01.007.
[22]
陈亚伦, 何乐, 陈慧军, 等. 血管与斑块内出血同时成像序列对Willis环完整性的评价[J]. 中国医学影像学杂志, 2018, 26(4): 241-245, 251. DOI: 10.3969/j.issn.1005-5185.2018.04.001.
Chen YL, He L, Chen HJ, et al. Blood vessel and intraplaque hemorrhage simultaneous imaging sequence in evaluation of the integrity of Willis circle[J]. Chin J Med Imaging, 2018, 26(4): 241-245, 251. DOI: 10.3969/j.issn.1005-5185.2018.04.001.
[23]
Candes EJ, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[J]. IEEE Trans Inf Theory, 2006, 52(2): 489-509. DOI: 10.1109/TIT.2005.862083.
[24]
Donoho DL. Compressed sensing [J]. IEEE Trans Inf Theory. 2006; 52 (4): 1289-1306. DOI: 10.1109/tit.2006.871582.
[25]
Vranic JE, Cross NM, Wang Y, et al. Compressed sensing-sensitivity encoding (CS-SENSE) accelerated brain imaging: reduced scan time without reduced image quality[J]. AJNR Am J Neuroradiol, 2019, 40(1): 92-98. DOI: 10.3174/ajnr.A5905.
[26]
Feng L, Benkert T, Block KT, et al. Compressed sensing for body MRI[J]. J Magn Reson Imaging, 2017, 45(4): 966-987. DOI: 10.1002/jmri.25547.
[27]
Konar AS, Vajuvalli NN, Rao R, et al. Accelerated dynamic contrast enhanced MRI based on region of interest compressed sensing[J]. Magn Reson Imaging, 2020, 67: 18-23. DOI: 10.1016/j.mri.2019.11.014.
[28]
Zhu L, Wu X, Sun ZY, et al. Compressed-sensing accelerated 3-dimensional magnetic resonance cholangiopancreatography: application in suspected pancreatic diseases[J]. Invest Radiol, 2018, 53(3): 150-157. DOI: 10.1097/RLI.0000000000000421.
[29]
Chen B, Zhao K, Li B, et al. High temporal resolution dynamic contrast-enhanced MRI using compressed sensing-combined sequence in quantitative renal perfusion measurement[J]. Magn Reson Imaging, 2015, 33(8): 962-969. DOI: 10.1016/j.mri.2015.05.004.
[30]
Li B, Li H, Li J, et al. Relaxation enhanced compressed sensing three-dimensional black-blood vessel wall MR imaging: preliminary studies[J]. Magn Reson Imaging, 2015, 33(7): 932-938. DOI: 10.1016/j.mri.2015.03.009.

上一篇 靶向纤维蛋白多肽纳米探针在增强静脉血栓磁共振显像的研究
下一篇 小儿脑膜黑色素瘤病一例
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2