分享:
分享到微信朋友圈
X
特别关注
基于CMR左室长轴应变预测多发性骨髓瘤继发心肌淀粉样变LGE的临床价值
胡梦瑶 宋怡沛 郑甜 喻思思 李淑豪 陶欣慰 龚良庚

Cite this article as: Hu MY, Song YP, Zheng T, et al. Clinical value of CMR left ventricular long-axis strain in predicting LGE in cardiac amyloidosis secondary to multiple myeloma[J]. Chin J Magn Reson Imaging, 2022, 13(12): 26-31, 44.本文引用格式:胡梦瑶, 宋怡沛, 郑甜, 等. 基于CMR左室长轴应变预测多发性骨髓瘤继发心肌淀粉样变LGE的临床价值[J]. 磁共振成像, 2022, 13(12): 26-31, 44. DOI:10.12015/issn.1674-8034.2022.12.005.


[摘要] 目的 探讨心脏磁共振(cardiac magnetic resonance, CMR)左室长轴应变(left ventricular long-axis strain, LV LAS)对多发性骨髓瘤(multiple myeloma, MM)继发心肌淀粉样变(cardiac amyloidosis, CA)患者延迟钆增强(late gadolinium enhancement, LGE)的预测价值。材料与方法 回顾性分析33例MM继发CA患者及29例对照组临床资料和CMR参数。根据有无异常强化将MM继发CA患者分为LGE(+)组和LGE(-)组,采用单因素logistic回归与受试者工作特征(receiver operating characteristic, ROC)曲线分析CMR参数对MM继发CA患者LGE的预测价值。采用组内相关系数(intra-class correlation coefficient, ICC)分析CMR左室(left ventricular, LV)长轴应变观察者间和观察者内的一致性。结果 MM继发CA患者多为老年男性(占72.7%),临床症状复杂多样,患者心电图等辅助检查结果多异常。同一医师两次测量以及不同医师之间测量所得的LV质量指数(mass index, MI)及LV LAS一致性好(ICC范围为0.906~0.982)。与LGE(-)组比较,LGE(+)组患者左室射血分数(left ventricular ejection fraction, LVEF)、心脏指数(cardiac index, CI)更低,LVMI更大,LV LAS受损程度更严重(P均<0.05)。单因素logistic回归分析显示,LVEF、CI、LVMI、LV LAS预测LGE阳性的差异均有统计学意义(P<0.05)。ROC曲线分析显示,LV LAS<-14.3% [曲线下面积(area under the curve, AUC):0.909,敏感度:90.5%,特异度:75.0%,95% CI:0.756~0.981]和LVMI>83.9 g/m²(AUC:0.877,敏感度:71.4%,特异度:100.0%,95% CI:0.716~0.965)预测CA患者LGE阳性效能佳。结论 LV LAS不仅能定量评估继发CA患者左室功能受损严重程度,且对LGE具有预测价值,能为肾功能不全患者心脏受累进行早期临床定量评估和预防严重不良事件提供决策。
[Abstract] Objective To investigate the predictive value of left ventricular long-axis strain (LV LAS) with cardiac magnetic resonance (CMR) in patients with cardiac amyloidosis secondary to multiple myeloma (MM) with late gadolinium enhancement (LGE).Materials and Methods The clinical data and CMR parameters of 33 patients with CA secondary to MM and 29 control groups were retrospectively analyzed. CA patients secondary to MM were divided into LGE (+) group and LGE (-) group according to the presence or absence of abnormal enhancement, univariate logistic regression and receiver operating characteristic (ROC) curve was used to analyze the predictive value of CMR parameters for LGE in CA patients secondary to MM. The intra-class correlation coefficient (ICC) test was used to analyze the differences between and within observers of the left ventricular long axis strain (LV LAS) of CMR.Results Most patients with CA secondary to MM are elderly men (accounting for 72.7%), with complex clinical symptoms and abnormal results such as electrocardiograms. Compared with the LGE (-) group, patients with LGE (+) had lower left ventricular ejection fraction (LVEF), cardiac index (CI), greater left ventricular mass index (LVMI), and more severe LV LAS damage (P<0.05). Univariate logistic regression analysis showed that there were statistically significant differences in the prediction of LGE positivity by LVEF, CI, LVMI and LV LAS (P<0.05). ROC analysis showed that LV LAS<-14.3% [area under the curve (AUC): 0.909, sensitivity: 90.5%, specificity: 75.0%, 95% CI: 0.756-0.981] and LVMI>83.9 g/m² (AUC: 0.877, sensitivity: 71.4%, specificity: 100.0%, 95% CI: 0.716-0.965) predicted good LGE positive efficacy in CA patients.Conclusions LV LAS can not only quantitatively assess the severity impaired of left ventricular function in CA patients secondary to MM, but also has predictive value for LGE. It can provide decision-making for early clinical quantitative assessment of cardiac involvement and prevention of serious adverse events in patients with renal insufficiency.
[关键词] 多发性骨髓瘤;心肌淀粉样变;左室;长轴应变;心脏磁共振;磁共振成像;延迟钆增强
[Keywords] multiple myeloma;cardiac amyloidosis;left ventricle;long-axis strain;cardiac magnetic resonance;magnetic resonance imaging;late gadolinium enhancement

胡梦瑶 1   宋怡沛 1   郑甜 1   喻思思 1   李淑豪 1   陶欣慰 2   龚良庚 1*  

1 南昌大学第二附属医院医学影像中心,南昌 330006

2 拜耳医药保健有限公司,北京 100176

龚良庚,E-mail:gong111999@126.com

作者利益冲突声明:全体作者均声明无利益冲突。


基金项目: 国家自然基金 81860316 江西省自然科学基金 20212ACB206021
收稿日期:2022-08-08
接受日期:2022-11-29
中图分类号:R445.2  R733.3  R542.2 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2022.12.005
本文引用格式:胡梦瑶, 宋怡沛, 郑甜, 等. 基于CMR左室长轴应变预测多发性骨髓瘤继发心肌淀粉样变LGE的临床价值[J]. 磁共振成像, 2022, 13(12): 26-31, 44. DOI:10.12015/issn.1674-8034.2022.12.005.

       多发性骨髓瘤(multiple myeloma, MM)是一种克隆性浆细胞异常增殖的恶性疾病[1],临床表现复杂多样且非特异性,易误诊、漏诊[2]。MM患者单克隆免疫球蛋白产生过量的错误折叠蛋白,聚集形成β褶皱的蛋白原纤维片,称为淀粉样蛋白。研究表明,多达30%的MM患者可继发淀粉样变性,部分患者在典型的MM症状之前可能会出现相应靶器官损伤[3]。患者的预后取决于受累器官的数量和严重程度,其中心脏受累与较差的预后相关,若不加干预,病情进展迅速,中位生存期仅6个月[4]。心脏磁共振(cardiac magnetic resonance, CMR)延迟钆增强(late gadolinium enhancement, LGE)序列典型表现(透壁或弥漫心内膜下强化)有利于心肌淀粉样变(cardiac amyloidosis, CA)的诊断。既往研究表明,LGE是CA患者主要不良事件的预测因子[5, 6, 7]。但MM继发CA患者多伴肾脏淀粉样变导致肾功能不全[1],故临床实践中需注射对比剂的LGE序列在部分肾功能不全患者中应用受限。既往无快速LV LAS评估MM继发CA患者的左室(left ventricular, LV)功能的研究,故本研究运用基于平扫的常规电影序列,采用CMR特征追踪技术(CMR-feature tracking, CMR-FT)衍生的快速左室长轴应变(left ventricle long-axis strain, LV LAS)评估MM继发CA患者的LV功能,并评估其对LGE结果的预测效能,旨在为肾功能不全患者心脏受累进行早期临床定量评估,为预防严重不良事件提供决策。

1 材料与方法

1.1 研究对象

       本文为回顾性研究,遵守2013年版《赫尔辛基宣言》。本研究经南昌大学第二附属医院医学研究伦理委员会批准,免除受试者知情同意,批准文号:研临审【2018】第(019)号。回顾性分析2018年4月至2022年6月由南昌大学第二附属医院收治并行CMR检查、经临床确诊MM且伴CA患者的资料。纳入标准:(1)心内膜下心肌活检确诊CA或心外活检刚果红染色阳性,结合超声心动图或CMR的平均LV室壁厚度(室间隔和后壁)≥12 mm [8];(2)符合2020年《中国多发性骨髓瘤诊治指南》MM诊断标准[9]。排除标准:(1)合并其他类型心肌增厚心肌病患者(如肥厚型心肌病、法布里病等);(2)高血压控制欠佳患者;(3)CMR图像质量不佳,不满足诊断要求或无法进行后处理者。纳入同期年龄、性别匹配的健康志愿者作为对照组。

1.2 CMR检查方法及图像后处理

       采用GE 3.0 T 磁共振扫描仪(Discovery MR 750W,GE Healthcare,Milwaukee,WI),所有图像结合心电门控和呼吸门控进行采集。心脏电影序列采用快速平衡稳态自由进动序列获取心脏标准短轴、两腔、三腔及四腔心的电影图像,扫描参数:TR 3.9 ms,TE 1.6 ms,FOV 38 cm×38 cm,重建矩阵256×256,翻转角55°,层厚6 mm,层间距0 mm。LGE采用反转恢复快速梯度回波序列,静脉注射对比剂加乐显(拜耳药业,德国)后开始计时,延迟5~8 min后开始扫描心脏标准短轴、两腔及四腔心,短轴覆盖LV基底部至心尖部范围。对比剂用量0.2 mmol/kg,流速3 mL/s,后给予10~20 mL生理盐水冲洗。

       CMR原始图像导入后处理软件CVI42(Circle Cardiovascular Imaging, Inc., Calgary, Canada),应用多平面长轴功能模块,采用自动追踪技术勾画两腔及四腔心电影序列LV的心外膜轮廓(图1),得到LV功能及长轴应变参数。LGE图像分别由具有4年影像诊断经验的住院医师及具有6年影像诊断经验的主治医师肉眼评估有无延迟强化及其强化模式。随机选择20例患者,在删除原始图像后处理痕迹后由同一医师两次测量及两名医师之间测量的CMR参数计算组内相关系数(intra-class correlation coefficient, ICC),评价测量结果的一致性。

图1  CMR LV LAS后处理图。在左室舒张末期、收缩末期,测量心外膜心尖边界与二尖瓣前内侧和后外侧叶起点连线中点缩短长度,评估心肌收缩期间的两腔(1A、1B)和四腔心(1C、1D)LAS。CMR:心脏磁共振;LV:左室;LAS:长轴应变。
Fig. 1  LV LAS post-processing diagram. At the end diastolic and end-systolic phases of the LV, the length of the shortening of the midpoint of the epicardial apical boundary and the beginning of the anteromedial and posterolateral lobes of the mitral valve was measured, and the LAS of the two (1A, 1B) and four (1C, 1D) chambers during myocardial contraction was evaluated. CMR: cardiac magnetic resonance; LV: left ventricle; LAS: long-axis strain.

1.3 统计学分析

       本研究采用R语言及MedCalc 11软件进行数据统计分析。使用ICC比较两位观察者对两组患者CMR参数测量值间的一致性,ICC>0.75为一致性良好。分类资料用例数(百分比)表示,采用卡方检验或Fisher精确检验。计数资料采用Shapiro-Wilk检验作正态性检验,对符合正态分布的计量资料以均值±标准差表示,组间比较采用独立样本t检验。非正态分布的计量资料则采用中位数(上、下四分位数)表示,组间比较采用Kruskal-Wallis秩和检验。非参数定量资料组间比较采用Mann-Whitney U检验。采用单因素logistic回归分析进行CMR参数对LGE的预测。并对CMR参数预测患者LGE阳性的效能作受试者工作特征(receiver operating characteristics, ROC)曲线,获取曲线下面积(area under the curve, AUC)。以约登指数为标准,寻找最佳截断值,并计算敏感度、特异度。以双侧检验值P<0.05为差异有统计学意义。

2 结果

2.1 临床基本资料

       本研究共纳入33例MM继发CA患者(MM组)[年龄(62.1±9.1)岁;男24例,女9例]及29例同期行CMR检查的健康志愿者[对照组;年龄(58.1±9.3)岁;男18例,女11例]。MM组患者体质量、体质量指数(body mass index, BMI)、收缩压、舒张压均较对照组减低(P<0.05),见表1

表1  两组间基本临床资料比较
Tab. 1  Comparison of basic clinical data between the two groups

2.2 MM继发CA患者临床及实验室资料

       患者初次就诊临床表现复杂多样,部分患者肾功能异常发现蛋白尿,部分患者心功能不全表现为胸闷、双下肢水肿、脑钠肽(brain natriuretic peptide, BNP)升高。心电图可发现胸/肢体导联低电压、传导阻滞及假性梗死性Q波等(图2)。大多数患者伴有心包积液和(或)胸腔积液,见表2

图2  MM继发CA患者典型CMR及心电图表现。2A:左室心肌均匀增厚;2B:双心房增大;2C:LGE四腔心层面呈弥漫性心内膜下环形强化,心包腔积液;2D:LGE短轴层面左室部分心肌透壁强化;2E:心电图可见房颤、V1~V4导联异常Q波并ST段抬高、肢导联低电压。MM:多发性骨髓瘤;CA:心肌淀粉样变;CMR:心脏磁共振;LGE:延迟钆增强。
Fig. 2  Typical CMR and electrocardiogram findings in patients with CA secondary to MM. 2A: Left ventricular myocardial homogeneous thickening; 2B: Biatria enlargement; 2C: LGE sequence shows diffuse subendocardial circumferential enhancement at the level of the four-chambered heart with pericardial cavity effusion; 2D: Partial myocardial transmural enhancement of the left ventricle at the short-axis level of the LGE sequence; 2E: electrocardiogram shows atrial fibrillation, abnormal Q waves in leads V1-V4 with ST-segment elevation and low voltage in limb leads. MM: multiple myeloma; CA: cardiac amyloidosis; CMR: cardiac magnetic resonance; LGE: late gadolinium enhancement.
表2  MM继发CA患者临床及实验室检查结果
Tab. 2  Clinical and laboratory findings of CA patients secondary to MM

2.3 两组间超声参数比较

       MM继发CA患者较对照组左、右心房增大,LV舒张末径减小,室间隔及LV后壁增厚(P均<0.05),见表3

表3  两组间超声参数比较
Tab. 3  Comparison of ultrasound parameters between two groups

2.4 两组间CMR参数的一致性检验

       LVMI及LV LAS在观察者组内及组间均具有良好的一致性,结果如表4所示。

表4  左室长轴应变参数观察者内及观察者间的一致性检验结果
Tab. 4  Results of intra- and inter-observer agreement of left ventricular long-axis strain parameters

2.5 两组间CMR参数比较

       MM继发CA患者左室收缩末容积指数(end-systolic volume index, ESVI)较对照组大,患者多表现为顽固难治的射血分数保留性心衰(heart failure with preserved ejection fraction, HFpEF),LVEF较对照组减低,但仍>50%;心率(heart rate, HR)较对照组快,左室质量分数(left ventricle mass index, LVMI)较对照组大,LV LAS较对照组减低(P均<0.05),见表5

表5  组间CMR左室心功能及长轴应变参数比较
Tab. 5  Comparison of left ventricular cardiac function and long-axis strain parameters of CMR between groups

2.6 MM亚组间CMR参数比较

       根据CMR的LGE结果作为分组变量,将MM组分为LGE(+)(21例)和LGE(-)组(12例)亚组。LGE(+)组的LVEF进一步减低,心脏指数(cardiac index, CI)较LGE(-)组减低,且LVMI进一步增大,LV LAS受损程度更严重(P均<0.05),见表6

表6  MM继发CA亚组间CMR参数比较
Tab. 6  Comparison of CMR parameters between subgroups of CA secondary to MM

2.7 CMR参数预测LGE的结果

       在单因素二元逻辑回归分析中,LVEF(P=0.010)、CI(P=0.027)、LVMI(P=0.005)、LV LAS(P=0.002)差异均有统计学意义(表7)。LVEF、CI、LVMI、LV LAS联合的多因素二元逻辑回归因几个变量互相影响后几乎可以完全将二分类结局分开,导致无法收敛,P值都靠近1,故未行多因素回归分析。ROC曲线分析结果表明,预测MM继发CA患者LGE,LV LAS最佳截断值为-14.3%,敏感度为90.5%,特异度为75.0%,AUC为0.909(95% CI:0.756~0.981);LVMI最佳截断值为83.9 g/m²,敏感度为71.4%,特异度为100.0%,AUC为0.877(95% CI:0.716~0.965)(图3)。

图3  预测延迟钆增强的受试者工作特征曲线分析。LV LAS:左室长轴应变;LVMI:左室质量指数。
Fig. 3  Receiver operating characteristic curve analysis for predicting late gadolinium enhancement. LV LAS: left ventricle long-axis strain; LVMI: left ventricle mass index.
表7  CMR参数的单因素二元逻辑回归分析
Tab. 7  Univariate logistic regression analysis of CMR parameters

3 讨论

       本研究通过CMR-FT LV LAS评估MM继发CA患者左室的结构及功能。研究结果显示:(1)MM继发CA患者多为老年男性,常伴心房增大、LV心肌肥厚,结合心电图等辅助检查有助于早期诊断;(2)尽管大多数MM继发CA患者LVEF>50%,但CMR-FT LV LAS可定量评估患者左室功能受损情况;(3)LV LAS和LVMI预测CA患者LGE效能佳。本研究结果对于临床医师提高MM及继发CA患者的早期诊断率具有潜在临床价值。

3.1 MM继发CA患者的临床特征

       MM起病多缓慢,早期症状不明显,后期临床表现复杂多样,就诊科室分散,大多患者首次就诊与确诊MM间隔时间长,不利于MM及继发淀粉样变患者的早期诊断和干预。MM患者单克隆免疫球蛋白轻链产生的病理性淀粉样蛋白可沉积在全身各个器官,由于这种不溶性纤维蛋白在组织中进行性细胞外沉积,可破坏靶器官功能并导致终末器官功能障碍或衰竭。大约15%~30%的MM患者可继发CA[10],就诊于心内科易误诊为肥厚型心肌病或高血压性心脏病。心内膜下心肌活检是诊断CA的金标准,但其具有侵入性。本研究通过对MM继发CA患者的临床及实验室检查结果进行归纳总结,旨在提高诊断水平。

       Wu等[11]研究结果表明,结合心包积液、导联低电压、CMR整体径向应变受损和左室壁增厚的风险评分可诊断CA。本研究结果显示,中老年患者心肌肥厚且排外高血压、糖尿病等危险因素,出现难以解释的难治性心力衰竭症状,应怀疑CA。结合心电图典型不匹配的胸/肢体导联低电压,超声提示舒张功能受限、双房增大、典型“闪烁征”、心包积液,可进一步增加CA诊断信心。再结合详细实验室检查有助于诊断及亚型确定,从而指导患者进一步治疗及管理。2022年《中国多发性骨髓瘤诊治指南》推荐怀疑MM继发CA患者有条件可行CMR检查[12],典型表现为左室弥漫性肥厚,电影序列可见心肌顺应性减低,LGE序列透壁或弥漫心内膜下环性强化[13]。多学科诊疗(multi-disciplinary treatment, MDT)对降低MM患者的误诊率、缩短患者从发病到确诊时间、精准治疗减少并发症、减轻患者经济负担及改善患者预后至关重要。

3.2 CMR-FT评估MM继发CA患者的临床价值

       目前普遍认为LVEF减低与不良预后相关,但MM继发患者多为HFpEF,很难用常规的心功能参数来识别心肌损害。本研究采用CMR左室LAS技术测量患者LV应变参数,从而定量评估LV功能受损程度。主要技术优点是对常规电影序列进行后处理,不需要专门的脉冲序列、额外的扫描时间,且图像空间分辨率高、可重复性好。心室收缩功能取决于纵向和径向的泵功能,其中60%的每搏输出量归功于纵向泵功能。既往研究表明,整体心肌应变参数对CA患者预后具有重要意义[6,14, 15, 16, 17, 18, 19, 20, 21, 22],尤其是整体纵向应变[23, 24],纵向功能对于心功能不全患者的诊断和风险分层都是可靠指标[25],尤其是对于HFpEF患者[26]。CMR-FT的整体纵向应变(global longitudinal strain, GLS)为许多心肌病提供了增量预后价值,但需要大量的后处理,而LAS后处理更简便[27]

       既往研究证明,LGE与CA患者的全因死亡风险增加有关[28],早期识别患者心肌LGE并进行危险分层,对患者的治疗和预后至关重要[29]。但MM患者单克隆产生的错误折叠蛋白可在全身各脏器沉积,部分累及肾脏导致肾功能不全或肾功能衰竭[30],是对比剂注射的相对或绝对禁忌证,故非增强参数预测LGE阳性对这部分患者具有重要临床价值。

       本研究结果表明,LV LAS对患者LGE阳性预测效能极佳,LGE阳性患者左室功能进一步受损,LV LAS减低更显著,可能是心肌淀粉样物质浸润程度更严重。因心肌细胞外淀粉样物质沉积更多,LVMI增加也可在一定程度上预测LGE结果,为肾功能不全患者的风险评估提供新的思路。有助于患者心脏受累的早期临床定量评估,提前进行临床干预,为预防严重不良事件提供决策。

3.3 局限性及展望

       首先,本研究应用LV LAS,未与传统CMR-FT GLS结果的一致性进行对照研究,但Leng等[31]研究表明,快速LAS参数可重复性高,能可靠有效地评估LV纵向功能;第二,尽管已知心肌淀粉样变的典型LGE模式为透壁或弥漫性强化,但在本研究中并未对LGE进行量化,由于CA患者的钆对比剂大量分布于细胞外间质,血池药物廓清速度过快,出现“反转强化”现象,不能确保LGE量化结果的准确性,故未对其进行量化;第三,本研究为横断面研究,没有对患者进行随访,未纵向研究LAS对患者的预后价值,我们未来将进一步研究。

       综上所述,对不明原因心肌肥厚、肾功能不全的老年患者应排外CA,对确诊MM的患者,有条件的情况下推荐常规行CMR排外继发CA。MDT对MM继发CA患者的早期诊断及治疗时间窗前移至关重要。CMR LV LAS不仅能敏感地定量评估继发CA患者左室功能受损严重程度,还能预测患者LGE结果,为对比剂禁忌证患者提供诊断新思路。未来仍需进一步研究探索CMR衍生的长轴应变参数对MM继发CA患者的预后价值及在临床决策中的作用。

[1]
Singh G, Savage NM, Jillella AP, et al. Light Chain-Predominant Multiple Myeloma Subgroup: Impaired Renal Function Correlates with Decreased Survival[J]. Lab Med, 2022, 53(2): 145-148. DOI: 10.1093/labmed/lmab054.
[2]
Ihne S, Morbach C, Sommer C, et al. Amyloidosis-the Diagnosis and Treatment of an Underdiagnosed Disease[J]. Dtsch Arztebl Int, 2020, 117(10): 159-166. DOI: 10.3238/arztebl.2020.0159.
[3]
Siddiqi OK, Ruberg FL. Cardiac amyloidosis: An update on pathophysiology, diagnosis, and treatment[J]. Trends Cardiovasc Med, 2018, 28(1): 10-21. DOI: 10.1016/j.tcm.2017.07.004.
[4]
Cariou E, Bennani Smires Y, Victor G, et al. Diagnostic score for the detection of cardiac amyloidosis in patients with left ventricular hypertrop hy and impact on prognosis[J]. Amyloid, 2017, 24(2): 101-109. DOI: 10.1080/13506129.2017.1333956.
[5]
Bhatti S, Watts E, Syed F, et al. Clinical and prognostic utility of cardiovascular magnetic resonance imaging in myeloma patients with suspected cardiac amyloidosis[J]. Eur Heart J Cardiovasc Imaging, 2016, 17(9): 970-977. DOI: 10.1093/ehjci/jew101.
[6]
Wan K, Sun J, Yang D, et al. Left Ventricular Myocardial Deformation on Cine MR Images: Relationship to Severity of Disease and Prognosis in Light-Chain Amyloidosis[J]. Radiology, 2018, 288(1): 73-80. DOI: 10.1148/radiol.2018172435.
[7]
Li X, Li J, Lin L, et al. Left and right ventricular myocardial deformation and late gadolinium enhancement: incremental prognostic value in amyloid light-chain amyloidosis[J]. Cardiovasc Diagn Ther, 2020, 10(3): 470-480. DOI: 10.21037/cdt-20-181.
[8]
Huang S, Xu HY, Diao KY, et al. Left ventricular global function index by magnetic resonance imaging-a novel marker for differentiating cardiac amyloidosis from hypertrophic cardiomyopathy[J]. Sci Rep, 2020, 10(1): 4707-4714. DOI: 10.1038/s41598-020-61608-9.
[9]
中国医师协会血液科医师分会, 中华医学会血液学分会, 中国医师协会多发性骨髓瘤专业委员会. 中国多发性骨髓瘤诊治指南(2020年修订)[J]. 中华内科杂志, 2020, 59(5): 341-346. DOI: 10.3760/cma.j.cn112138-20200304-00179.
Hematologists Branch of Chinese Medical Doctor Association, Hematology Branch of Chinese Medical Association, Multiple Myeloma Professional Committee of Chinese Medical Doctor Association. The guidelines for the diagnosis and management of multiple myeloma in China (2020 revision)[J]. Chin J Intern Med, 2020, 59(5): 341-346. DOI: 10.3760/cma.j.cn112138-20200304-00179.
[10]
Bhatti S, Vallurupalli S, Ambach S, et al. Myocardial strain pattern in patients with cardiac amyloidosis secondary to multiple myeloma: a cardiac MRI feature tracking study[J]. Int J Cardiovas Imag, 2018, 34(1): 27-33. DOI: 10.1007/s10554-016-0998-6.
[11]
Wu Y, Pu C, Zhu W, et al. A Risk Score to Diagnose Cardiac Involvement and Provide Prognosis Information in Patients at Risk of Cardiac Light-Chain Amyloidosis[J/OL]. Front Cardiovasc Med, 2022, 9: 817456 [2022-07-30]. https://www.frontiersin.org/articles/10.3389/fcvm.2022.817456/full. DOI: 10.3389/fcvm.2022.817456.
[12]
中国医师协会血液科医师分会, 中华医学会血液学分会. 中国多发性骨髓瘤诊治指南(2022年修订)[J]. 中华内科杂志, 2022, 61(5): 480-487. DOI: 10.3760/cma.j.cn112138-20220309-00165.
Hematologists Branch of Chinese Medical Doctor Association, Hematology Branch of Chinese Medical Association. Guidelines for the diagnosis and management of multiple myeloma in China (2022 revision)[J]. Chin J Intern Med, 2022, 61(5): 480-487. DOI: 10.3760/cma.j.cn112138-20220309-00165.
[13]
Giusca S, Steen H, Montenbruck M, et al. Multi-parametric assessment of left ventricular hypertrophy using late gadolinium enhancement, T1 mapping and strain-encoded cardiovascular magnetic resonance[J]. J Cardiovasc Magn Reson, 2021, 23(1): 92-104. DOI: 10.1186/s12968-021-00775-8.
[14]
Uzan C, Lairez O, Raud-Raynier P, et al. Right ventricular longitudinal strain: a tool for diagnosis and prognosis in light-chain amyloidosis[J]. Amyloid, 2018, 25(1): 18-25. DOI: 10.1080/13506129.2017.1417121.
[15]
Tan Z, Yang Y, Wu X, et al. Left atrial remodeling and the prognostic value of feature tracking derived left atrial strain in patients with light-chain amyloidosis: a cardiovascular magnetic resonance study[J]. Int J Cardiovasc Imaging, 2022, 38: 1519-1532. DOI: 10.1007/s10554-022-02534-x.
[16]
Ochs MM, Fritz T, Arenja N, et al. Regional differences in prognostic value of cardiac valve plane displacement in systemic light-chain amyloidosis[J]. J Cardiovasc Magn Reson, 2017, 19(1): 87-95. DOI: 10.1186/s12968-017-0402-2.
[17]
Bodez D, Ternacle J, Guellich A, et al. Prognostic value of right ventricular systolic function in cardiac amyloidosis[J]. Amyloid, 2016, 23(3): 158-167. DOI: 10.1080/13506129.2016.1194264.
[18]
Wan K, Lin J, Guo X, et al. Prognostic Value of Right Ventricular Dysfunction in Patients With AL Amyloidosis: Comparison of Different Techniques by Cardiac Magnetic Resonance[J]. J Magn Reson Imaging, 2020, 52(5): 1441-1448. DOI: 10.1002/jmri.27200.
[19]
Kuetting DL, Homsi R, Sprinkart AM, et al. Quantitative assessment of systolic and diastolic function in patients with LGE negative systemic amyloidosis using CMR[J]. Int J Cardiol, 2017, 232: 336-341. DOI: 10.1016/j.ijcard.2016.12.054.
[20]
Knight DS, Zumbo G, Barcella W, et al. Cardiac Structural and Functional Consequences of Amyloid Deposition by Cardiac Magnetic Resonance and Echocardiography and Their Prognostic Roles[J]. JACC Cardiovasc Imaging, 2019, 12(5): 823-833. DOI: 10.1016/j.jcmg.2018.02.016.
[21]
Illman JE, Arunachalam SP, Arani A, et al. MRI feature tracking strain is prognostic for all-cause mortality in AL amyloidosis[J]. Amyloid, 2018, 25(2): 101-108. DOI: 10.1080/13506129.2018.1465406.
[22]
Liu H, Fu H, Guo YK, et al. The prognostic value of right ventricular deformation derived from cardiac magnetic resonance tissue tracking for all-cause mortality in light-chain amyloidosis patients[J]. Cardiovasc Diagn Ther, 2020, 10(2): 161-172. DOI: 10.21037/cdt.2020.01.03.
[23]
Romano S, Judd RM, Kim RJ, et al. Prognostic Implications of Mitral Annular Plane Systolic Excursion in Patients with Hypertension and a Clinical Indication for Cardiac Magnetic Resonance Imaging: A Multicenter Study[J]. JACC Cardiovasc Imaging, 2019, 12(9): 1769-1779. DOI: 10.1016/j.jcmg.2018.10.003.
[24]
Arenja N, Andre F, Riffel JH, et al. Prognostic value of novel imaging parameters derived from standard cardiovascular magnetic resonance in high risk patients with systemic light chain amyloidosis[J]. J Cardiovasc Magn Reson, 2019, 21(1): 53-64. DOI: 10.1186/s12968-019-0564-1.
[25]
Kado Y, Obokata M, Nagata Y, et al. Cumulative Burden of Myocardial Dysfunction in Cardiac Amyloidosis Assessed Using Four-Chamber Cardiac Strain[J]. J Am Soc Echocardiogr, 2016, 29(11): 1092-1099. e2. DOI: 10.1016/j.echo.2016.07.017.
[26]
Liu Z, Zhang L, Liu M, et al. Myocardial Injury in Multiple Myeloma Patients With Preserved Left Ventricular Ejection Fraction: Noninvasive Left Ventricular Pressure-Strain Myocardial Work[J/OL]. Front Cardiovasc Med, 2021, 8: 782580 [2022-07-30]. https://www.frontiersin.org/articles/10.3389/fcvm.2021.782580/full. DOI: 10.3389/fcvm.2021.782580.
[27]
Schuster A, Backhaus SJ, Stiermaier T, et al. Fast manual long-axis strain assessment provides optimized cardiovascular event prediction following myocardial infarction[J]. Eur Heart J Cardiovasc Imaging, 2019, 20(11): 1262-1270. DOI: 10.1093/ehjci/jez077.
[28]
Raina S, Lensing SY, Nairooz RS, et al. Prognostic Value of Late Gadolinium Enhancement CMR in Systemic Amyloidosis[J]. JACC Cardiovasc Imaging, 2016, 9(11): 1267-1277. DOI: 10.1016/j.jcmg.2016.01.036.
[29]
Shang Z, Zhao ML, Wang XY, et al. Multidisciplinary team management and long-term prognosis of an elderly patient with severe cardiac amyloidosis complicated with multiple myeloma[J]. J Geriatr Cardiol, 2022, 19(5): 398-402. DOI: 10.11909/j.issn.1671-5411.2022.05.006.
[30]
Chen J, Liu H, Li L, et al. Clinical features and treatment outcome of elderly multiple myeloma patients with impaired renal function[J/OL]. J Clin Lab Anal, 2019, 33(5): e22888 [2022-07-30]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6595344/. DOI: 10.1002/jcla.22888.
[31]
Leng S, Tan RS, Zhao X, et al. Fast long-axis strain: a simple, automatic approach for assessing left ventricular longitudinal function with cine cardiovascular magnetic resonance[J]. Eur Radiol, 2020, 30(7): 3672-3683. DOI: 10.1007/s00330-020-06744-6.

上一篇 高血压性心脏病患者左室心肌纤维化与左房功能参数相关性的初步研究
下一篇 心脏磁共振T1 mapping和组织追踪技术在左心室肥厚相关疾病中的鉴别诊断价值
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2