分享:
分享到微信朋友圈
X
基础研究
基于静息态功能磁共振成像观察推桥弓干预Ⅰ级原发性高血压的即时脑效应
陈东男 叶森林 石悦 段正庭 冯跃

Cite this article as: Chen DN, Ye SL, Shi Y, et al. Immediate brain effect of pushing Qiaogong point intervention on stage I essential hypertension based on rs-fMRI[J]. Chin J Magn Reson Imaging, 2022, 13(11): 93-98.本文引用格式:陈东男, 叶森林, 石悦, 等. 基于静息态功能磁共振成像观察推桥弓干预Ⅰ级原发性高血压的即时脑效应[J]. 磁共振成像, 2022, 13(11): 93-98. DOI:10.12015/issn.1674-8034.2022.11.017.


[摘要] 目的 采用静息态功能磁共振成像(resting-state functional magnetic resonance imaging, rs-fMRI)技术观察推桥弓干预Ⅰ级原发性高血压(essential hypertension, EH)患者的即时脑效应。材料与方法 前瞻性纳入15例EH患者和15例性别、年龄、身高、体质量等基线情况与EH组相匹配的健康对照(healthy controls, HC)。入组前分别填写两组人口统计学数据,试验开始后,先采集两组患者基线期rs-fMRI数据、收缩压和舒张压,随后对 EH组进行10 min推桥弓干预,再行第二次MRI扫描,最后测量收缩压和舒张压。采用低频振幅(amplitude of low frequency fluctuation, ALFF)分析方法,比较EH组与HC组的ALFF值,再选择Pearson相关分析ALFF值差异脑区与血压的相关性;以及干预前后ALFF值的变化。结果 与HC组相比,EH组患者仅左侧额中回(left middle frontal gyrus, MFG.L)ALFF值显著降低(高斯随机场校正,voxel P<0.005,cluster P<0.05)。MFG.L ALFF值与收缩压呈负相关(r=-0.627,P=0.012);与舒张压无相关性(P>0.05)。EH组干预后,收缩压(t=3.61,P=0.003)、舒张压(t=3.80,P=0.002)均显著低于治疗前;双侧额中回(middle frontal gyrus, MFG)的ALFF值显著升高(高斯随机场校正,voxel P<0.005,cluster P<0.05)。结论 EH患者存在MFG.L大脑活动降低,可能提示EH发病伴随着脑功能的损害;推桥弓能即时调控EH患者MFG的ALFF值,可能是推拿刺激信号传递,激活大脑调节功能,从而改善血压。
[Abstract] Objective To observe the immediate brain effect of pushing Qiaogong point intervention in patients with grade I essential hypertension (EH) by resting-state functional magnetic resonance imaging (rs-fMRI).Materials and Methods Fifteen EH patients and 15 healthy controls (HC) with no statistical difference in sex, age, height, weight and other baseline conditions were prospectively enrolled. Demographic data of the two groups were filled in before enrollment. Baseline rs-fMRI data, systolic and diastolic blood pressures were collected for both groups at the start of the experiment, followed by a 10 minute Qiaogong point intervention for the EH group, followed by a second MRI scan and final measurement of systolic and diastolic blood pressures. Amplitude of low frequency fluctuation (ALFF) was used to compare the ALFF values of EH group and HC group, and the changes of ALFF values before and after intervention. Pearson correlation analysis was used to analyze the correlation between the difference of ALFF value in brain region and blood pressure between two groups.Results Compared with HC group, ALFF value of left middle frontal gyrus (MFG.L) was significantly lower in EH group (Gaussian random field correction, voxel P<0.005, cluster P<0.05). ALFF value of left middle frontal gyrus was negatively correlated with systolic blood pressure (r=-0.627, P=0.012). There was no significant correlation with diastolic blood pressure (P>0.05). After intervention, the systolic blood pressure and diastolic blood pressure of hypertension group were significantly lower than those before treatment (t=3.61, P=0.003); (t=3.80, P=0.002). ALFF values were significantly increased in bilateral middle frontal gyrus (Gaussian random field correction, voxel P<0.005, cluster P<0.05).Conclusions Decreased brain activity in left middle frontal gyrus in hypertensive patients Qiaogong point that the onset of EH is accompanied by brain function damage. Pushing bridge arch can immediately regulate the ALFF value of MFG in EH patients, which may communicate with massage stimulation signal, activate the brain regulatory function, and thus improve blood pressure.
[关键词] Ⅰ级原发性高血压;推桥弓;静息态功能磁共振成像;低频振幅;额中回;即时效应;磁共振成像
[Keywords] grade I essential hypertension;push Qiaogong point;resting-state functional magnetic resonance imaging;amplitude of low frequency fluctuation;middle frontal gyrus;immediate effect;magnetic resonance imaging

陈东男    叶森林    石悦    段正庭    冯跃 *  

成都中医药大学针灸推拿学院,成都 610075

冯跃,E-mail:fengyue714@163.com

作者利益冲突声明:全体作者均声明无利益冲突。


基金项目: 国家自然科学基金青年科学基金 81102662 四川省科技厅课题 2019YJ0490
收稿日期:2022-06-29
接受日期:2022-11-06
中图分类号:R445.2  R743.2 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2022.11.017
本文引用格式:陈东男, 叶森林, 石悦, 等. 基于静息态功能磁共振成像观察推桥弓干预Ⅰ级原发性高血压的即时脑效应[J]. 磁共振成像, 2022, 13(11): 93-98. DOI:10.12015/issn.1674-8034.2022.11.017

       原发性高血压(essential hypertension, EH)是导致全球疾病负担和疾病死亡率的首位单一风险因素[1],每年有7.7万~1040万人因血压升高而死亡[2]。调查显示,全球约四分之一的人患有EH,而中国EH人口超2.5亿,且患病率仍在不断上升[3]。目前,EH的治疗仍以降压药治疗为主[4],但降压药常伴有药物副作用,以及依从性差等问题[5]。因此,在血压管理模式中,仍然需要寻找一种安全有效的治疗方法来提高EH治疗的安全性和患者的依从性[6]。推拿疗法作为治疗EH的公认补充替代疗法之一,具有降压疗效显著、物美价廉、缓解伴随症状及延长疾病进程等作用[7]。推桥弓作为推拿降压核心手法之一,在临床治疗中应用广泛。虽然目前一些临床研究提示推桥弓在治疗EH有其独特的临床优势和安全性,但其具体中枢降压机制仍不明确[8]

       近年来随着神经影像学的发展,静息态功能磁共振成像(resting-state functional magnetic resonance imaging, rs-fMRI)作为当下最常用的一种非损伤性的活体脑功能检测技术[9],通过实时血氧水平依赖(blood oxygenation level dependent, BOLD)信号反映大脑功能活动状态[10],被广泛用于疾病中枢机制的探索。低频振幅(amplitude of low frequency fluctuation, ALFF)是一种基于体素水平的局部rs-fMRI数据分析技术[11],可反映脑区神经活动与信息传递特性的相关性。其作为一种功能性指标,可通过检测特定低频范围(0.01~0.08 Hz)反映局部脑区活动的强弱,研究发现EH的特征是某些特定区域有大脑结构和功能变化[12],但通过rs-fMRI观察推桥弓干预EH脑效应的研究极少。

       团队前期临床研究发现,推桥弓对于EH患者具有明显的即时降压作用[13],而明确推桥弓的中枢效应机制可以为其临床推广和运用提供客观化证据。为了揭示推桥弓即时降压效应的科学性,我们提出假说:推桥弓能刺激中枢信号,激活大脑特定脑区功能,立即调节血压。因此,本研究采用rs-fMRI技术,结合ALFF分析方法,观察推桥弓干预前后EH患者的ALFF的变化,以期部分揭示推桥弓即时降压的中枢机制,为临床推广该手法治疗EH提供一定科学依据。

1 材料与方法

1.1 研究对象

       本研究为前瞻性研究,根据rs-fMRI研究的最小样本量为每组12例[14],考虑到各种不可控客观因素导致20%的脱失率,本研究纳入样本量30例,故招募EH组和健康对照(healthy controls, HC)受试者各15名。15名EH患者来自成都中医药大学附属医院,患者诊断标准采用我国中华医学会心血管病学分会、中国医师协会EH专业委员以及EH联盟(中国)联合公布的《中国高血压防治指南》2018年修订版,按照其规定的血压水平的定义和分类标准作出Ⅰ级高血压的诊断:即三次非同日诊断血压均符合Ⅰ级高血压的定义和分类标准。

1.1.1 EH组

       纳入标准:(1)患者非同日3次收缩压(systolic blood pressure, SBP)在140~159 mmHg(1 mmHg≈0.133 kPa)范围内和(或)舒张压(diastolic blood pressure, DBP)在90~99 mmHg范围内;(2)性别不限,年龄18~60岁,右利手;(3)未接受过药物治疗或接受过药物治疗但停药超过7 d;(4)试验前1个月内未接受过推拿治疗;(5)自愿参加并签署知情同意书。排除标准:(1)有严重内脏疾病和严重神经功能障碍的患者;(2)怀孕或哺乳期的女性和精神疾病患者;(3)体内有金属物质,如支架、心脏起搏器等;(4)对噪声或低温环境有强烈反应和幽闭恐惧症。

1.1.2 HC组

       公开招募15名性别、年龄、身高、体质量等基线情况与EH组相匹配的HC。纳入标准:(1)收缩压在90~139 mmHg范围内和舒张压在60~89 mmHg范围内;(2)试验前1个月内未接受过推拿治疗;(3)自愿参加并签署知情同意书。排除标准同EH组。本研究遵守《赫尔辛基宣言》,且经成都中医药大学附属医院伦理委员会批准,批准文号为2020KL-035,全体受试者均签署了知情同意书。

1.2 试验方案

1.2.1 血压测量

       采用生产厂家为欧姆龙(大连)有限公司的中国欧姆龙(OMRON)电子血压计U10L测量血压。受试者取坐位,上臂裸露,前臂伸直、轻度外展、肘部和心脏同一水平。使用专用袖带,将袖带紧贴患者右上臂,松紧适宜,袖带下缘在肘横纹上2~3 cm,启动OMRON(U10L)电子血压计,测量3次,取平均值。

1.2.2 推桥弓操作

       桥弓穴位于颈部,翳风与缺盆的连线。翳风和缺盆依据国家标准《穴位名称和定位》(GB/T 12346-2006)定位。推拿介质用婴儿玉米爽身粉(强生中国有限公司)。所有推桥弓操作由一名拥有3年以上推拿经验的注册中医师完成。在研究开始前,推拿医生被要求完成为期3天的标准培训课程,以掌握研究方案和确保干预手法一致性,用TC-1智能推拿手法参数测定仪(上海欣曼科教设备有限公司)测试稳定后进行操作。患者仰卧位,头向左转,暴露右侧桥弓穴。医生位于患者头前,左手按压患者右耳,充分暴露翳风穴;右手食、中、无名三指自然伸直,以5 N左右的压力,约3 s/次的频率自翳风缓慢推向缺盆,重复100次。左侧的操作方法与右侧相同。

1.2.3 试验流程

       试验流程如下:(1)试验前要求受试者排尿和排便,休息10 min后测量血压,然后进行基线rs-fMRI扫描;(2)EH组在扫描后随即接受推桥弓干预;(3)干预后即刻(约3 min内)进行第二次rs-fMRI扫描,扫描完成10 min后测量血压;(4)健康受试者不进行推桥弓治疗,只完成基线rs-fMRI扫描。

1.3 Rs-fMRI扫描

       采用德国西门子3.0 T MR扫描仪(Allegra, 西门子医疗系统)和8通道头部线圈。受试者初筛后,进入扫描间,取仰卧位,头放置泡沫垫上,佩带BC-QD30硅胶隔音耳塞(Bacou,法国)。三维T1WI图像采集参数:TR 1900 ms,TE 2.26 ms,翻转角(flip angle, FA)9°,FOV 256 mm×256 mm,矩阵 256×256,体素大小1 mm×1 mm×1 mm,层厚 1.0 mm,层间距 1.0 mm,扫描时间 2 min 41 s。rs-fMRI BOLD数据采集参数:TR 2000 ms,TE 30 ms,FA 90°,FOV 240 mm×240 mm,矩阵 64×64,体素大小 3.75 mm×3.75 mm×5 mm,层厚5 mm,层间隔0.7 mm,共采集180个时间点,扫描时间为360 s。若在扫描过程中出现不适,嘱患者及时示意。

1.4 数据处理

       采用dcm2niigui.exe程序把DICOM格式的rs-fMRI原始数据转化成NIFTI格式。在MATLAB 2013b(MathWorks, Natick, MA, USA)平台运行RESTplus(http://restfmri.net)和SPM12(https://www.fil.ion.ucl.ac.uk/)软件进行数据分析和图像处理。数据预处理步骤包括:(1)去除前10个时间点;(2)时间层校正;(3)头动校正,删除在任何轴上最大头部运动>1.5 mm和(或)旋转>1.5°的受试者,所有被试头动均合格;(4)原点校正;(5)空间标准化,使用平面回波成像(echo planar imaging, EPI)模板和T1图像统一分割进行归一化处理,配准到蒙特利尔神经学研究所(Montreal Neurological Institute, MNI)标准空间;(6)空间平滑(6 mm×6 mm×6 mm);(7)去线性化趋势;(8)回归协变量,回归六个方向头动、白质信号和脑脊液信号。

1.5 ALFF分析

       使用RESTplus软件对完成预处理后的数据进行ALFF计算。用快速傅里叶变换将过滤后的时间序列转换到频域[15],然后得到功率谱。在功率谱的每个频率上计算平方根,并在每个体素的0.01~0.08 Hz范围内获得平均平方根。这个平均平方根被作为ALFF。随后把ALFF值进行Z值标准化[16]。采用两独立样本t检验分析EH组和HC组标准化后ALFF值,采用配对t检验分析EH组干预前后的标准化ALFF值,把性别、年龄和头动作为协变量。统计结果通过高斯随机场(Gaussian Random Field, GRF)校正,设定体素水平阈值P<0.005,簇水平P<0.05为差异有统计学意义的脑区,最后用xjview8.0(https://www.alivelearn.net/xjview8/)软件把结果报出对应脑区的MNI坐标。

1.6 统计学分析

       运用SPSS 26.0软件对两组患者的人口学特征、收缩压和舒张压等基线资料用两样本t检验;组间性别比较用卡方检验,以P<0.05表示差异具有统计学意义。提取两样本t检验有差异脑区的ALFF值,以性别、年龄及头动参数为协变量,分别与收缩压和舒张压进行相关性分析,数据服从正态分布用Pearson相关分析,以P<0.05表示差异具有统计学意义。

2 结果

2.1 人口统计学结果

       所有受试者均完成本次试验且无身体不适、rs-fMRI数据均符合要求,最终纳入EH组和HC组各15名。两组患者在性别、年龄、身高、体质量、体质量指数上的差异无统计学意义(P>0.05)。两组收缩压和舒张压差异具有统计学意义(P<0.001),结果见表1

表1  两组受试者人口统计学资料比较
Tab. 1  Demographic data of all subjects

2.2 临床数据分析

       EH组推桥弓前后血压相比,治疗后收缩压显著低于治疗前(t=3.61,P=0.003),治疗后舒张压也显著低于治疗前(t=3.80,P=0.002),具体结果见表2

表2  EH组推桥弓前与推桥弓后血压比较
Tab. 2  Comparison of blood pressure of patients with hypertensive before and after tuina

2.3 影像结果分析

       与HC相比,EH组干预前在左侧额中回(left middle frontal gyrus, MFG.L(-36,48,3)表现出明显的ALFF值信号降低(GRF校正,voxel P<0.005, cluster P<0.05),t值为-4.88,体素数为81;未见ALFF升高的脑区(图1)。EH组干预前后相比,干预后双侧额中回(middle frontal gyrus, MFG)表现出明显的ALFF值信号升高(GRF校正,voxel P<0.005,cluster P<0.05)(表3图2)。

图1  原发性高血压组推桥弓前与健康对照组低频振幅值差异脑区比较。
Fig. 1  Comparison of brain areas with differences in low frequency amplitude amplitude of low frequency fluctuation values before pushing the bridge arch in the primary hypertension group and in healthy controls.
图2  原发性高血压组推桥弓前与推桥弓后低频振幅值脑区变化。
Fig. 2  Changes in low-frequency amplitude amplitude of low frequency fluctuation values in brain regions before and after pushing the bridge arch in the primary hypertension group.
表3  EH组推桥弓前与推桥弓后ALFF值比较
Tab. 3  Comparison of ALFF value of patients with hypertensive before and after tuina

2.4 Pearson相关分析结果

       Pearson相关分析结果显示,EH组较HC组降低的ALFF值与收缩压(r=-0.627,P=0.012)呈负相关(图3),但与舒张压(P>0.05)无显著相关性(图4)。

图3  原发性高血压组和健康对照组左额中回差值与收缩压的相关性。ALFF为低频振幅。
Fig. 3  Correlation between left middle frontal gyrus difference and systolic blood pressure in essential hypertension group and healthy control group. ALFF is the low frequency amplitude.
图4  原发性高血压组和健康对照组左额中回差值与舒张压的相关性。ALFF为低频振幅。
Fig. 4  Correlation between the difference between the left middle frontal gyrus and diastolic blood pressure in the primary hypertension group and healthy controls. ALFF is the low frequency amplitude.

3 讨论

       本研究基于rs-fMRI比较了EH与HC大脑ALFF值的差异,观察了推桥弓治疗EH前后的即时脑效应变化,进一步分析了差异脑区ALFF值与血压之间的相关性,结果发现:在静息状态下EH存在局部脑功能异常改变。与HC相比,EH患者局部脑功能活动降低,表现为MFG.L ALFF值降低,且与收缩压显著相关。与EH治疗前相比,治疗后患者局部脑功能活动出现即时升高,表现为双侧MFG ALFF值升高。

3.1 EH患者较健康人存在相应脑区ALFF值降低

       EH是血管性认知障碍的危险因素[17],可诱发卒中[18]、痴呆[19]、认知能力下降[20]等精神疾病。头部不适、注意力不集中、记忆力减退、语言障碍、视觉空间能力下降是其常见临床表现[21]。EH发病是一个长期慢性过程,在这一过程中,血管重构、脑血管堵塞、脑血流量减少等因素均可潜在损害患者脑功能,同时增加认知障碍的发生,最终导致相关局部脑功能活动降低。相关研究发现[22],EH患者具有不同于健康人大脑结构和功能的改变。杨杰华等[23]发现EH患者左侧半卵圆中心、双侧尾状核头部、双侧丘脑的小脑平均峰度值较健康人明显降低,且EH患者在未出现神经功能缺损阶段,海马回、半卵圆中心、尾状核头部、丘脑出现早期的脑实质微结构改变。Bu等[24]发现,EH受试者表现出大脑功能和有效连接性下降。张东升等[25]发现,与健康人比较,EH患者双侧后扣带/楔前叶ALFF降低。Hu等[26]表明,EH受试者在左侧额内侧上回和MFG.L的ALFF值低于HC。本研究结果也发现了MFG.L功能活动下降,这可能与EH诱发疾病的发生和临床症状有关。Hughes等[27]、Kozera等[28]发现EH与认知损害密切相关。Esme等[29]对中国12 281名患者进行前瞻性队列研究,观察到认知障碍显著增加与EH有关。以上研究表明EH与大脑认知损害存在密切联系。对于未表现出记忆、注意力、语言表达下降等认知障碍症状的EH患者来说,EH对脑功能的损害可能常被忽略,而MFG在其中起着重要作用。研究表明[30],MFG存在半球功能不对称性,语言表达能力与MFG.L相关,注意力与右侧MFG相关。其中MFG.L与选择性注意任务相关,持续注意引起的网络节点变化发生在双侧后部MFG[31]。MFG支持非语言特异性认知控制,对语言相关部位(下额叶)保持有效沟通至关重要[32]。本研究EH组干预前与HC组比较,EH患者MFG.L ALFF值减弱,可能提示EH发病伴随着脑功能的损害,在不同程度上表现出注意力不集中、记忆力减退等症状,后期逐渐诱发各种疾病。

3.2 推桥弓治疗EH患者前后脑功能变化

       本研究发现,推桥弓治疗后,EH患者双侧MFG ALFF值升高,这可能与推拿刺激信号传递,激活大脑调节功能,从而降低血压有关。Xing等[33]发现推拿能促进神经损伤修复和调节大脑可塑性。Wen等[34]发现脊柱推拿可以对脑区ALFF值产生影响,并调节功能失调的大脑区域。郭汝松等[35]发现健康人接受正骨手法后,双侧MFG、右侧颞中回的ALFF值增高。谭文莉等[36]发现推拿治疗慢性下腰痛患者后,两侧MFG、右侧扣带回、右侧角回ALFF值减低,MFG.R的ALFF值与疼痛视觉模拟评分显著相关。此外,越来越多的证据表明MFG和高血压之间存在密切的关系。额叶皮层已被证明参与调节压力反射敏感性[37],可将颈动脉窦感觉神经末梢的压力信号传递到延髓的心血管中枢,增强迷走神经活性,调控血压[38]。Li等[39]利用两个负荷水平的n-back任务测试,发现高血压患者的认知老化风险与额叶相关,认知老化程度与血压成正比[40]。在脑网络中,MFG属于背外侧前额叶皮层的一部分[41],是额顶网络的主要脑区[42],负责执行认知控制、处理躯体感知觉和痛觉。MFG还可通过上纵束和额枕下束连接部分顶叶下叶、后颞叶、舌回和楔部等脑区[43]。这些脑区属于默认模式网络(default mode network, DMN)相关脑区,推拿干预能起到积极调控作用。杨玉婵等[44]发现推拿对慢性腰痛患者DMN的调节主要表现在左侧内侧额上回、后扣带皮质连接增强,且脑区间连接强度与患者感觉、认知水平呈正相关。Zhang等[45]发现推拿能增强患者DMN与感觉和执行相关皮层的连接,从而改善临床症状。本研究结果也一致性地发现推拿对脑功能的调控作用,推桥弓能激活MFG的ALFF值,与以往推拿fMRI研究结果一致[46]。临床长期研究证实,推桥弓可有效治疗EH,但具体中枢机制不明。本研究通过影像学技术,明确了推桥弓治疗EH患者的即时脑效应,为推桥弓的即时降压效应提供了科学依据,更为其长期降压脑效应研究提供了研究基础。同时,该研究结果对于临床意义重大。不仅通过推桥弓的即时降压效应证明了推桥弓治疗EH的有效性,更为临床如何规范运用推桥弓频次和治疗周期提供了新思路。

3.3 不足和展望

       EH是一种涉及多因素、多系统的复杂性疾病,本研究仍存在许多不足:(1)纳入的样本量偏少,结果可能存在偏倚;鼓励今后有更大样本且多中心的研究来重复验证。(2)单次操作引起有变化的脑区可能存在偶然性,也可能与长期治疗后引起变化的脑区存在差异,需要进一步研究周期性推桥弓治疗对EH患者的脑效应机制。(3)研究中仅使用ALFF分析方法,结果可能存在偶然性,在未来的研究中,可运用局部一致性、功能连接等多种功能影像研究方法,多角度探讨推桥弓对EH患者的中枢作用机制。(4)推桥弓是推法作用于桥弓穴上,本研究证实了推桥弓具有即时降压作用,且在大脑特定区域有反应,但是否意味着单独运用推法或桥弓穴也能降低血压,激活相关脑区,这一研究结果是个性还是共性,值得我们进一步探索。

[1]
Brant LCC, Passaglia LG, Pinto-Filho MM, et al. The burden of resistant hypertension across the world[J]. Curr Hypertens Rep, 2022, 24(3): 55-66. DOI: 10.1007/s11906-022-01173-w.
[2]
GBD Risk Factor Collaborators. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017[J/OL]. Lancet, 2018, 392(10159): 1923-1994 [2022-06-28]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5614451/. DOI: 10.1016/S0140-6736(18)32225-6.
[3]
NCD Risk Factor Collaboration (NCD-RisC). Long-term and recent trends in hypertension awareness, treatment, and control in 12 high-income countries: an analysis of 123 nationally representative surveys[J/OL]. Lancet, 2019, 394(10199): 639-651 [2022-06-28]. https://www.sciencedirect.com/science/article/pii/S0140673619311456. DOI: 10.1016/S0140-6736(19)31145-6.
[4]
Laurent S. Antihypertensive drugs[J]. Pharmacol Res, 2017, 124: 116-125. DOI: 10.1016/j.phrs.2017.07.026.
[5]
Stuermer EK, Besser M, Terberger N, et al. Side effects of frequently used antihypertensive drugs on wound healing in vitro[J]. Skin Pharmacol Physiol, 2019, 32(3): 162-172. DOI: 10.1159/000499433.
[6]
赵琦, 李海松, 冀美琦, 等. 推拿治疗原发性高血压的疗效和安全性系统综述及Meta分析[J]. 中医杂志, 2018, 59(18): 1568-1573. DOI: 10.13288/j.11-2166/r.2018.18.009.
Zhao Q, Li HS, Ji MQ, et al. Systematic review and meta-analysis of efficacy and safety of massage in treatment of essential hypertension[J]. J Tradit Chin Med, 2018, 59(18): 1568-1573. DOI: 10.13288/j.11-2166/r.2018.18.009.
[7]
Zhu BY, Li X, Peng J. Therapeutic observation on tuina for primary hypertension due to liver-fire flaming-up[J]. J Acupunct Tuina Sci, 2019, 17(2): 105-110. DOI: 10.1007/s11726-019-1099-6.
[8]
Shen ZF, Bian XD, Gao F, et al. Effect of tuina manipulations on blood pressure and its variability in hypertension patients[J]. J Acupunct Tuina Sci, 2015, 13(3): 180-184. DOI: 10.1007/s11726-015-0846-6.
[9]
Yousaf T, Dervenoulas G, Politis M. Advances in MRI methodology[J]. Int Rev Neurobiol, 2018, 141: 31-76. DOI: 10.1016/bs.irn.2018.08.008.
[10]
Wang ZW, Chen Z, Zhang LF, et al. Status of hypertension in China: results from the China hypertension survey, 2012-2015[J]. Circulation, 2018, 137(22): 2344-2356. DOI: 10.1161/CIRCULATIONAHA.117.032380.
[11]
Zou QH, Zhu CZ, Yang YH, et al. An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: fractional ALFF[J]. J Neurosci Methods, 2008, 172(1): 137-141. DOI: 10.1016/j.jneumeth.2008.04.012.
[12]
Wang YJ, Zheng Y, Qu SS, et al. Cerebral targeting of acupuncture at combined acupoints in treating essential hypertension: an rs-fMRI study and curative effect evidence[J/OL]. Evid Based Complement Alternat Med, 2016: 5392954 [2022-06-28]. https://www.hindawi.com/journals/ecam/2016/5392954/. DOI: 10.1155/2016/5392954.
[13]
谢蕊, 张贵敏, 冯跃. 针刺联合推桥弓治疗轻度原发性高血压临床研究[J]. 陕西中医药大学学报, 2021, 44(2): 101-105. DOI: 10.13424/j.cnki.jsctcm.2021.02.021.
Xie R, Zhang GM, Feng Y. Clinical efficacy of acupuncture combined with push bridge arch in the treatment of mild essential hypertension[J]. J Shaanxi Univ Chin Med, 2021, 44(2): 101-105. DOI: 10.13424/j.cnki.jsctcm.2021.02.021.
[14]
Hayasaka S, Peiffer AM, Hugenschmidt CE, et al. Power and sample size calculation for neuroimaging studies by non-central random field theory[J]. Neuroimage, 2007, 37(3): 721-730. DOI: 10.1016/j.neuroimage.2007.06.009.
[15]
Zang YF, He Y, Zhu CZ, et al. Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI[J]. Brain Dev, 2007, 29(2): 83-91. DOI: 10.1016/j.braindev.2006.07.002.
[16]
Yan CG, Cheung B, Kelly C, et al. A comprehensive assessment of regional variation in the impact of head micromovements on functional connectomics[J]. Neuroimage, 2013, 76: 183-201. DOI: 10.1016/j.neuroimage.2013.03.004.
[17]
Canavan M, O'Donnell MJ. Hypertension and cognitive impairment: a review of mechanisms and key concepts[J/OL]. Front Neurol, 2022, 13: 821135 [2022-06-22]. https://doi.org/10.3389/fneur.2022.821135. DOI: 10.3389/fneur.2022.821135.
[18]
de Havenon A, Sharma R, Falcone GJ, et al. Effect of intensive blood pressure control on incident stroke risk in patients with mild cognitive impairment[J/OL]. Stroke, 2022, 53(7): e242-e245 [2022-06-28]. https://doi.org/10.1161/STROKEAHA.122.038818. DOI: 10.1161/strokeaha.122.038818.
[19]
Sierra C. Hypertension and the risk of dementia[J/OL]. Front Cardiovasc Med, 2020, 7: 5. [2022-06-28]. https://doi.org/10.3389/fcvm.2020.00005. DOI: 10.3389/fcvm.2020.00005.
[20]
Men X, Sun W, Fan F, et al. China stroke primary prevention trial: visit-to-visit systolic blood pressure variability is an independent predictor of primary stroke in hypertensive patients[J/OL]. J Am Heart Assoc, 2017, 6(3): e004350 [2022-06-28]. https://doi.org/10.1161/JAHA.116.004350. DOI: 10.1161/jaha.116.004350.
[21]
Muela HC, Costa-Hong VA, Yassuda MS, et al. Hypertension severity is associated with impaired cognitive performance[J/OL]. J Am Heart Assoc, 2017, 6(1): e004579 [2022-06-28]. https://doi.org/10.1161/JAHA.116.004579. DOI: 10.1161/jaha.116.004579.
[22]
Haight T, Nick Bryan R, Erus G, et al. White matter microstructure, white matter lesions, and hypertension: an examination of early surrogate markers of vascular-related brain change in midlife[J]. Neuroimage Clin, 2018, 18: 753-761. DOI: 10.1016/j.nicl.2018.02.032.
[23]
杨杰华, 杨忠现, 陈纯娟, 等. DKI及ESWAN技术在评估原发性高血压患者脑实质微结构改变中的应用[J]. 中华神经医学杂志, 2021, 20(9): 907-914. DOI: 10.3760/cma.j.cn115354-20210726-00462.
Yang JH, Yang ZX, Chen CJ, et al. Evaluation of microstructural changes of brain parenchyma in patients with essential hypertension by diffuse kurtosis imaging and enhanced T2 star weighted angiography[J]. Chin J Neuromedicine, 2021, 20(9): 907-914. DOI: 10.3760/cma.j.cn115354-20210726-00462.
[24]
Bu L, Huo C, Xu G, et al. Alteration in brain functional and effective connectivity in subjects with hypertension[J/OL]. Front Physiol, 2018, 9: 669 [2022-06-24]. https://doi.org/10.3389/fphys.2018.00669. DOI: 10.3389/fphys.2018.00669.
[25]
张东升, 高洁, 严雪娇, 等. 2型糖尿病合并高血压对脑功能联合损伤效应的静息态fMRI研究[J]. 医学影像学杂志, 2021, 31(10): 1629-1633.
Zhang DS, Gao J, Yan XJ, et al. Evaluating the combined damage of type 2 diabetes and hypertension on spontaneous brain activity by resting state func-tional MRI[J]. Chin J Med Imaging, 2021, 31(10): 1629-1633.
[26]
Hu JY, Shu HY, Li QY, et al. Alternation of brain intrinsic activity in patients with hypertensive retinopathy: a resting-state fMRI study[J/OL]. Aging (Albany NY), 2021, 13(17): 21659-21670[2022-06-28]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8457564/. DOI: 10.18632/aging.203510.
[27]
Hughes D, Judge C, Murphy R, et al. Association of blood pressure lowering with incident dementia or cognitive impairment: a systematic review and meta-analysis[J]. JAMA, 2020, 323(19): 1934-1944. DOI: 10.1001/jama.2020.4249.
[28]
Kozera GM, Dubaniewicz M, Zdrojewski T, et al. Cerebral vasomotor reactivity and extent of white matter lesions in middle-aged men with arterial hypertension: a pilot study[J]. Am J Hypertens, 2010, 23(11): 1198-1203. DOI: 10.1038/ajh.2010.152.
[29]
Esme M, Yavuz BB, Yavuz B, et al. Masked hypertension is associated with cognitive decline in geriatric age-geriatric MASked hypertension and cognition (G-MASH-cog) study[J]. J Gerontol A Biol Sci Med Sci, 2018, 73(2): 248-254. DOI: 10.1093/gerona/glx150.
[30]
Song PH, Lin H, Liu CY, et al. Transcranial magnetic stimulation to the middle frontal gyrus during attention modes induced dynamic module reconfiguration in brain networks[J/OL]. Front Neuroinform, 2019, 13: 22. [2022-06-20]. https://doi.org/10.3389/fninf.2019.00022. DOI: 10.3389/fninf.2019.00022.
[31]
Sierpowska J, Fernandez-Coello A, Gomez-Andres A, et al. Involvement of the middle frontal gyrus in language switching as revealed by electrical stimulation mapping and functional magnetic resonance imaging in bilingual brain tumor patients[J]. Cortex, 2018, 99: 78-92. DOI: 10.1016/j.cortex.2017.10.017.
[32]
Luo B, Dong WW, Chang L, et al. Altered interhemispheric functional connectivity associated with early verbal fluency decline after deep brain stimulation in Parkinson's disease[J/OL]. Front Aging Neurosci, 2022, 14: 799545 [2022-06-28]. https://doi.org/10.3389/fnagi.2022.799545. DOI: 10.3389/fnagi.2022.799545.
[33]
Xing XX, Zheng MX, Hua XY, et al. Brain plasticity after peripheral nerve injury treatment with massage therapy based on resting-state functional magnetic resonance imaging[J]. Neural Regen Res, 2021, 16(2): 388-393. DOI: 10.4103/1673-5374.290912.
[34]
Wen Y, Chen XM, Jin X, et al. A spinal manipulative therapy altered brain activity in patients with lumbar disc herniation: a resting-state functional magnetic resonance imaging study[J/OL]. Front Neurosci, 2022, 16: 974792 [2022-06-28]. https://doi.org/10.3389/fnins.2022.974792. DOI: 10.3389/fnins.2022.974792.
[35]
郭汝松, 黄帆, 黄楚渝, 等. 岭南林氏正骨手法对枕大神经痛患者静息态功能磁共振低频振幅作用研究[J]. 广州中医药大学学报, 2021, 38(1): 109-115. DOI: 10.13359/j.cnki.gzxbtcm.2021.01.021.
Guo RS, Huang F, Huang CY, et al. Effect of Lingnan LIN's bone-setting manipulations on the amplitude of low frequency fluctuation in whole-brain resting-state fMRI in patients with greater occipital neuralgia[J]. J Guangzhou Univ Tradit Chin Med, 2021, 38(1): 109-115. DOI: 10.13359/j.cnki.gzxbtcm.2021.01.021.
[36]
谭文莉, 王炜, 姜宏宁, 等. 推拿治疗慢性下腰痛的即时脑效应研究[J]. 中国中医骨伤科杂志, 2019, 27(1): 11-16.
Tan WL, Wang W, Jiang HN, et al. Brain immediate analgesia mechanism of Tuina in low back pain[J]. Chin J Tradit Med Traumatol & Orthop, 2019, 27(1): 11-16.
[37]
Sheets JR, Briggs RG, Bai MY, et al. Parcellation-based modeling of the dorsal premotor area[J/OL]. J Neurol Sci, 2020 [2022-06-23]. https://doi.org/10.1016/j.jns.2020.116907. DOI: 10.1016/j.jns.2020.116907.
[38]
Li RR, Dai ZZ, Ye RD, et al. Magnetic stimulation of carotid sinus as a treatment for hypertension[J]. J Clin Hypertens (Greenwich), 2019, 21(2): 299-306. DOI: 10.1111/jch.13470.
[39]
Li X, Wang WX, Wang AL, et al. Vulnerability of the frontal and parietal regions in hypertensive patients during working memory task[J]. J Hypertens, 2017, 35(5): 1044-1051. DOI: 10.1097/HJH.0000000000001250.
[40]
Stoyanov D, Aryutova K, Kandilarova S, et al. Diagnostic task specific activations in functional MRI and aberrant connectivity of Insula with middle frontal gyrus can inform the differential diagnosis of psychosis[J/OL]. Diagnostics (Basel), 2021, 11(1): 95 [2022-06-24]. https://doi.org/10.3390/diagnostics11010095. DOI: 10.3390/diagnostics11010095.
[41]
Guevarra AC, Ng SC, Saffari SE, et al. Age moderates associations of hypertension, white matter hyperintensities, and cognition[J]. J Alzheimers Dis, 2020, 75(4): 1351-1360. DOI: 10.3233/JAD-191260.
[42]
Tabassi Mofrad F, Jahn A, Schiller NO. Dual function of primary somatosensory cortex in cognitive control of language: evidence from resting state fMRI[J]. Neuroscience, 2020, 446: 59-68. DOI: 10.1016/j.neuroscience.2020.08.032.
[43]
Briggs RG, Lin YH, Dadario NB, et al. Anatomy and white matter connections of the middle frontal gyrus[J/OL]. World Neurosurg, 2021, 150: e520-e529. [2022-06-24]. https://doi.org/10.1016/j.wneu.2021.03.045. DOI: 10.1016/j.wneu.2021.03.045.
[44]
杨玉婵, 谭文莉, 王炜, 等. 慢性腰痛推拿治疗前后默认脑网络功能连接变化研究[J]. 中国医学计算机成像杂志, 2020, 26(2): 101-108. DOI: 10.19627/j.cnki.cn31-1700/th.2020.02.001.
Yang YC, Tan WL, Wang W, et al. Study on the changes of default mode brain network function before and after Tuina treatment of chronic low back pain[J]. Chin Comput Med Imaging, 2020, 26(2): 101-108. DOI: 10.19627/j.cnki.cn31-1700/th.2020.02.001.
[45]
Zhang H, Chen H, Wang H, et al. Effect of Chinese tuina massage therapy on resting state brain functional network of patients with chronic neck pain[J]. J Tradit Chin Med Sci, 2015, 2(1): 60-68. DOI: 10.1016/j.jtcms.2015.10.001.
[46]
肖显俊. 正反向推桥弓治疗原发性高血压的即时临床疗效观察及中枢响应特征研究[D]. 成都: 成都中医药大学, 2015.
Xiao XJ. Immediate clinical efficacy and central response characteristics of positive and negative pushing bridge arch in the treatment of essential hypertension[D]. Chengdu: Chengdu University of TCM, 2015.

上一篇 磁共振扩散加权成像ADC值对普通型骨肉瘤新辅助化疗早期疗效的评估价值
下一篇 基于VOSviewer与CiteSpace的fMRI研究血管性认知障碍可视化分析
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2