分享:
分享到微信朋友圈
X
临床研究
FOCUS扩散加权成像在泌乳素型垂体微腺瘤诊断中的应用价值
王敏阳 于灜 颜林枫 韩宇 杨洋 梁寿衡 王玉瑶 崔光彬

Cite this article as: Wang MY, Yu Y, Yan LF, et al. Application value of FOCUS diffusion weighted imaging in the diagnosis of microprolactinomas[J]. Chin J Magn Reson Imaging, 2022, 13(11): 60-65.本文引用格式:王敏阳, 于灜, 颜林枫, 等. FOCUS扩散加权成像在泌乳素型垂体微腺瘤诊断中的应用价值[J]. 磁共振成像, 2022, 13(11): 60-65. DOI:10.12015/issn.1674-8034.2022.11.011.


[摘要] 目的 探索FOCUS(field of view optimized and constrained undistorted single-shot)扩散加权成像(diffusion weighted imaging, DWI)在泌乳素型垂体微腺瘤中的诊断价值。材料与方法 回顾性分析32例泌乳素型垂体微腺瘤与24例高泌乳素血症患者的MRI平扫、动态增强及FOCUS DWI序列图像并测量表观扩散系数(apparent diffusion coefficient, ADC)值。比较泌乳素型垂体微腺瘤组病变与未受累区ADC值及高泌乳素血症组平均ADC值间差异。采用随机区组设计的方差分析比较高泌乳素血症组垂体前叶左、中、右三个区域间ADC值。利用受试者工作特征(receiver operating characteristic, ROC)曲线分析ADC比值(即rADC)的诊断效能。结果 泌乳素型垂体微腺瘤组病变区的ADC值小于邻近未受累垂体区及高泌乳素血症组垂体前叶平均ADC值(P<0.001),且后两者ADC值差异无统计学意义(P=0.120)。高泌乳素血症组垂体中间部ADC值显著高于左右两侧部(P右=0.001,P左=0.012),而左右两侧ADC值间差异无统计学意义(P=1.000)。rADC诊断泌乳素型垂体微腺瘤的ROC曲线下面积为0.793。结论 FOCUS DWI有助于鉴别泌乳素型垂体微腺瘤及单纯高泌乳素血症垂体组织,可以考虑应用其辅助诊断泌乳素型垂体微腺瘤,从而为临床制订最佳治疗方案提供客观依据。
[Abstract] Objective To explore the diagnostic value of FOCUS (field of view optimized and constrained undistorted single-shot) diffusion weighted imaging (DWI) in microprolactinomas.Materials and Methods This retrospective study included 32 patients with microprolactinomas and 24 patients with hyperprolactinemia. The images of non-enhanced, dynamic enhanced, and FOCUS DWI were analyzed, and the apparent diffusion coefficient (ADC) values were measured in the FOCUS DWI sequences. The ADC values of the lesion and the adjacent uninvolved pituitary in microprolactinomas cases and the mean ADC values of hyperprolactinemia group were compared. ANOVA with randomized block design was used to compare the ADC values of the left, middle and right anterior pituitary in hyperprolactinemia group. The receiver operating characteristic (ROC) curve was performed to evaluate the diagnostic efficacy of the ADC ratio (rADC) between the lesion and the adjacent uninvolved pituitary in microprolactinomas cases.Results The ADC values of the lesions in microprolactinomas group were lower than that of the adjacent uninvolved pituitary region and the mean ADC values of anterior pituitary gland in hyperprolactinemia group (P<0.001), and no significant difference were found between the latter two (P=0.120). In hyperprolactinemia group, the ADC values of middle anterior pituitary were significantly higher than that of left and right anterior pituitary (Pright=0.001, Pleft=0.012). No significant difference was found between the ADC values in left and right anterior pituitary (P=1.000). The area under ROC curve in the diagnosis of microprolactinomas by rADC was 0.793.Conclusions FOCUS DWI can help to distinguish microprolactinomas from simple hyperprolactinemia pituitary, and it can be considered as an auxiliary diagnosis means of microprolactinomas, which could provide objective evidence for clinicians to make the best treatment plan.
[关键词] 泌乳素型垂体微腺瘤;高泌乳素血症;鞍区;磁共振成像;扩散加权成像;表观扩散系数
[Keywords] microprolactinomas;hyperprolactinemia;saddle area;magnetic resonance imaging;diffusion weighted imaging;apparent diffusion coefficient

王敏阳 1, 2   于灜 2   颜林枫 2   韩宇 2   杨洋 2   梁寿衡 2   王玉瑶 2   崔光彬 1, 2*  

1 陕西中医药大学医学技术学院,咸阳 712046

2 空军军医大学唐都医院放射科,西安 710038

崔光彬,E-mail:cgbtd@126.com

作者利益冲突声明:全体作者均声明无利益冲突。


基金项目: 陕西省重点研发计划 2019ZDLSF02-07
收稿日期:2022-08-13
接受日期:2022-11-07
中图分类号:R445.2  R736.4 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2022.11.011
本文引用格式:王敏阳, 于灜, 颜林枫, 等. FOCUS扩散加权成像在泌乳素型垂体微腺瘤诊断中的应用价值[J]. 磁共振成像, 2022, 13(11): 60-65. DOI:10.12015/issn.1674-8034.2022.11.011

       泌乳素型垂体腺瘤是最常见的功能性垂体腺瘤亚型,该亚型中微腺瘤比例达80%以上,以育龄期女性多见[1, 2],典型症状为闭经-溢乳-不孕三联征[3, 4],主要依据典型的临床表现、血清激素水平及影像学表现综合诊断。因血清泌乳素水平受多种因素影响,故临床诊断更加依赖精准、可靠、规范的影像学检查,而早期精准诊断对制订最佳治疗方案至关重要,此外,术前未精确定位垂体微腺瘤可能导致手术效果较差[5]。MRI是诊断泌乳素型垂体微腺瘤的首选影像学检查方法[5, 6],但因为垂体的不均匀性及解剖学变异[7],利用常规MRI序列诊断可能会出现较高的假阳性率[8, 9]。从病理学角度而言,与正常垂体组织相比,垂体腺瘤的细胞核深染、有异型性、核浆比高[10],致使二者内部水分子扩散特征显著不同。扩散加权成像(diffusion weighted imaging, DWI)是利用水分子布朗运动,反映病变内部情况的成像方式[11, 12],故将DWI应用于泌乳素型垂体微腺瘤的诊断中,有望提高其诊断效能。由于鞍区位于气体、颅骨及软组织交界区,常规基于回波平面成像(echo planar imaging, EPI)的DWI序列易产生磁敏感伪影,进而引起图像失真、变形等,故既往研究中常规EPI DWI序列在鞍区多应用于评估垂体大腺瘤[13]。而FOCUS DWI采取异面激励技术,可以避免卷褶伪影并有较高的空间分辨率[14, 15, 16],且已有研究表明FOCUS DWI较EPI DWI序列可以更好地显示正常垂体组织[17],此外,临床实践中多在高泌乳素血症背景下鉴别是否患有垂体微腺瘤,故本研究尝试将FOCUS DWI序列应用于鉴别泌乳素型垂体微腺瘤及单纯高泌乳素血症垂体组织,从而辅助诊断泌乳素型垂体微腺瘤,为早期精准诊断及临床治疗决策提供客观依据。

1 材料与方法

1.1 临床资料

       回顾性分析2019年7月至2020年6月于空军军医大学附属唐都医院门诊诊断为高泌乳素血症患者的影像资料。本研究遵照2013年版《赫尔辛基宣言》,经第四军医大学唐都医院医学伦理委员会批准,免除受试者知情同意,批准文号:TDLL-第202208-01号。

       泌乳素型垂体微腺瘤组纳入标准:(1)血清泌乳素水平升高(男性>20 ng/mL,女性>25 ng/mL),且结合临床及实验室检查排除生理性、药物性因素及原发性甲减、慢性肾功能衰竭、多囊卵巢综合征等其他病理性因素引起的血清泌乳素水平增高;(2)由2名具有10年以上工作经验的高年资放射科医师诊断符合垂体微腺瘤MRI标准:病变直径≤1 cm;T1WI低信号、T2WI呈高信号或等信号,伴出血、坏死时信号不均匀;注射对比剂后,早期肿瘤呈相对弱强化的特点;伴或不伴有垂体高度增加、垂体柄偏斜、海绵窦包绕、鞍底下陷等其他间接征象[18];(3)随访至少3个月,MRI复查病变仍然存在,或经手术证实为泌乳素型垂体微腺瘤。排除标准:(1)合并鞍区其他病变(脑膜瘤、Rathke囊肿、颅咽管瘤等);(2)随诊失访者;(3)图像质量差或序列不全者。

       高泌乳素血症组纳入标准:(1)血清泌乳素升高(男性>20 ng/mL,女性>25 ng/mL);(2)由2名具有10年以上工作经验的高年资放射科医师诊断为垂体MRI未见异常。排除标准:图像质量差或序列不全者。

1.2 检查设备及方法

       所有MRI检查均采用3.0 T磁共振扫描仪(MR750, GE Healthcare, Milwaukee, WI, USA),采用标准8通道相控阵头线圈。所有受试者均行鞍区常规MRI平扫、动态增强扫描及FOCUS DWI序列扫描。

       采用常规快速自旋回波序列行包括矢状位、冠状位T2WI和T1WI平扫及增强检查。T1WI扫描参数:TR 580 ms,TE min full,层厚1.6 mm,层间距0.3 mm,FOV 18 cm×18 cm,矩阵224×224,NEX 4.0。T2WI扫描参数:TR 2728 ms,TE 118 ms,层厚1.6 mm,层间距0.3 mm,FOV 20 cm×20 cm,矩阵320×288,NEX 4.5。动态增强T1WI扫描参数:TR 350 ms,TE min full,层厚2.0 mm,层间距0.3 mm,FOV 24 cm×24 cm,矩阵288×224,NEX 1.0,采用高压注射器团注对比剂钆特酸葡胺[钆特酸葡胺注射液,国药准字H20153167,15 mL(5.654 g,以钆特酸葡胺计),江苏恒瑞医药股份有限公司,中国],剂量为0.05 mmol/kg,注射速度为 2 mL/s,对比剂推注后以相同速度推注10 mL生理盐水。冠状位FOCUS DWI扫描参数:TR 2200 ms,TE minimum,层厚2.0 mm,层间距0 mm,FOV 16 cm×4.8 cm,矩阵 128×38,NEX 12.0,b=0、200 s/mm2

1.3 图像后处理

       将受试者所有FOCUS DWI数据传入ADW4.6工作站,由2名具有5年以上工作经验的放射科医师使用Functool软件包进行图像后处理及对比分析。在FOCUS DWI图像中,泌乳素型微腺瘤组参考平扫及动态增强序列确定病变位置,并在冠状位FOCUS DWI相对病变最大层面选取微腺瘤及邻近未受累垂体组织(MRI平扫、动态增强及FOCUS DWI序列均为正常区域)中心区域,避开囊变、出血及伪影较大的区域,勾画感兴趣区(regions of interest, ROI),ROI面积约5 mm2,软件自动生成相应表观扩散系数(apparent diffusion coefficient, ADC)值。高泌乳素血症组:在冠状位FOCUS DWI上垂体相对最大层面,选择垂体前叶左、中、右三个部分中心区域分别勾画ROI,ROI面积约5 mm2图1),再计算高泌乳素血症组ADC平均值。所有ADC值均取2名医师测量的平均值。

       泌乳素型垂体微腺瘤组中病变区ADC比邻近未受累垂体组织ADC值记为rADC微腺瘤;高泌乳素血症组中三个区域中ADC最小区域比最大区域记为rADC高泌乳素。

图1  女,32岁,高泌乳素血症,血清泌乳素58.1 ng/mL。冠状位T2WI(1A)及动态增强(1B)示垂体形态及信号均未见异常。FOCUS DWI(1C)及ADC图(1D)示垂体三个区域ROI勾画。垂体右侧部、中间部及左侧部ADC值分别为1.40×10-3 mm2/s、1.85×10-3 mm2/s及1.35×10-3 mm2/s。DWI:扩散加权成像;ADC:表观扩散系数;ROI:感兴趣区。
Fig. 1  Female, 32 years old, with hyperprolactinemia, prolactin 58.1 ng/mL. Coronal T2 weighted image (1A) and dynamic enhanced scanning sequence (1B) show no abnormal signal and morphology of pituitary. FOCUS DWI (1C) and ADC (1D) show the ROI delineation of three pituitary regions. The ADC values of the right, middle and left regions of pituitary are 1.40×10-3 mm2/s, 1.85×10-3 mm2/s and 1.35×10-3 mm2/s, respectively. DWI: diffusion weighted imaging; ADC: apparent diffusion coefficient; ROI: regions of interest.

1.4 统计学方法

       采用SPSS 26.0软件进行统计学分析。采用Shapiro-Wilk检验和Levene检验进行正态性检验和方差齐性检验,各组ADC值及2组rADC值均符合正态分布,用(x¯±s)表示,泌乳素型垂体微腺瘤组的病变与未受累垂体ADC比较采用配对样本t检验;高泌乳素血症组3个区域间ADC比较采用随机区组设计的方差分析,事后多重比较采用Bonferroni法检验。采用两独立样本t检验比较泌乳素型垂体微腺瘤病变与高泌乳素血症组ADC平均值间及两组rADC之间差异。绘制受试者工作特征曲线,计算曲线下面积,分析在检出泌乳素型垂体微腺瘤时rADC的最佳诊断阈值并计算敏感度和特异度。采用组内相关系数(intra-class correlation coefficient, ICC)评估观察者间ADC值测量的一致性,ICC值介于0~1之间,1表示完全可信,0表示不可信,<0.4表示相关性低,0.4~0.75表示一致性一般,>0.75表示相关性高。P<0.05为差异有统计学意义。

2 结果

2.1 ADC值分析

       最终纳入泌乳素型垂体微腺瘤组32例,年龄(31.5±1.9)岁;高泌乳素血症组24例,年龄(32.8±2.0)岁。所有被试均为女性,两组间年龄差异无统计学意义(P=0.850)。泌乳素型垂体微腺瘤组病变区较正常垂体组织扩散受限(图2),病变区ADC值明显小于邻近未受累垂体区(表1图3A)及高泌乳素血症组垂体前叶平均ADC值(表2),其差异均有统计学意义(P<0.001)。

       泌乳素型垂体微腺瘤组未受累垂体区ADC值为(2.27±0.37)×10-3 mm2/s,高泌乳素血症垂体前叶平均ADC值为(2.12±0.30)×10-3 mm2/s,两者ADC值差异无统计学意义(t=1.58,P=0.120)。高泌乳素血症组垂体前叶中间部略高于两侧ADC值,三个区域间ADC值差异有统计学意义(表3P<0.05),经事后比较,其中右侧部与左侧部ADC值较一致,差异无统计学意义(P=1.000)。

图2  女,29岁,泌乳素型垂体微腺瘤,血清泌乳素>200 ng/mL。1A:冠状位示垂体右侧部病变(箭)T2WI稍低信号;1B:动态增强早期强化程度弱于周围垂体组织;1C:FOCUS DWI呈稍高信号;1D:相应层面ADC图呈低信号。ADC值为1.08×10-3 mm2/s,邻近未受累垂体ADC值为1.90×10-3 mm2/s。DWI:扩散加权成像;ADC:表观扩散系数;ROI:感兴趣区。
Fig. 2  Female, 29 years old, with microprolactinoma, prolactin>200 ng/mL. 1A: Coronal T2 weighted image shows slightly hypointensity of the lesion on the right side of the pituitary (arrow). 1B: Dynamic enhanced scanning sequence shows that the early enhancement is weaker than that of the uninvolved pituitary gland. 1C: FOCUS DWI shows slightly higher signal; 1D: The ADC map of the corresponding layer shows low signal. ADC value of the lesion and the uninvolved pituitary gland were 1.08×10-3 mm2/s and 1.90×10-3 mm2/s, respectively. DWI: diffusion weighted imaging; ADC: apparent diffusion coefficient; ROI: regions of interest.
图3  ADC值比较及rADC诊断效能。3A:泌乳素型垂体微腺瘤组病变与未受累垂体ADC值比较;3B:rADC诊断泌乳素型垂体微腺瘤的ROC曲线。ADC:表观扩散系数;rADC:表观扩散系数比值;ROC:受试者工作特征。
Fig. 3  Comparison of ADC values and rADC diagnostic efficiency. 3A: Comparison of ADC values between pituitary adenoma and uninvolved pituitary gland in microprolactinoma group. 3B: ROC curve of rADC in the diagnosis of microprolactinoma. ADC: apparent diffusion coefficient; rADC: ratio of apparent diffusion coefficient; ROC: receiver operating characteristic.
表1  泌乳素型垂体微腺瘤组病变与未受累垂体ADC值比较
Tab. 1  Comparison of ADC values between pituitary adenoma and uninvolved pituitary gland in microprolactinoma group
表2  泌乳素型垂体微腺瘤病变与高泌乳素血症组垂体前叶平均ADC值比较
Tab. 2  Comparison of ADC values between microprolactinoma and anterior lobe of the pituitary gland in hyperprolactinemia group
表3  高泌乳素血症组垂体前叶三个区域间ADC值比较
Tab. 3  Comparison of ADC values between three regions of anterior pituitary gland in hyperprolactinemia group

2.2 rADC的ROC曲线分析

       泌乳素型垂体微腺瘤组rADC微腺瘤为(0.71±0.22),高泌乳素血症组rADC高泌乳素为(0.83±0.16),两者之间差异具有统计学意义(t=3.94,P<0.001)。利用ROC曲线分析rADC的诊断效能,其ROC曲线下面积为0.793,当以rADC=0.82作为诊断阈值时其敏感度和特异度分别为63%和91%,见图3B

2.3 观察者间一致性检验

       泌乳素型垂体微腺瘤组及高泌乳素血症组ADC值测量的观察者间一致性均较好(ICC均>0.75),见表4

表4  观察者间一致性检验
Tab. 4  Consistent analysis by two diagnostic physicians

3 讨论

       本研究表明,FOCUS DWI在鉴别单纯高泌乳素血症患者和垂体微腺瘤有一定的诊断意义,泌乳素型垂体微腺瘤病变区ADC值低于单纯高泌乳素血症患者垂体前叶平均ADC值。临床上多先发现高泌乳素血症再通过MRI诊断是否存在泌乳素型垂体微腺瘤,而既往研究多以健康人群为对照组,未考虑泌乳素对垂体形态及信号的影响,故本研究以高泌乳素血症且垂体MRI表现正常的人群为对照组[19],诊断结合长期血清泌乳素水平与临床表现随访及多次垂体MRI结果综合判断。

3.1 FOCUS DWI序列的优势及b值选择

       既往研究表明FOCUS DWI较常规平面回波DWI比较表现出明显减少的伪影、图像失真和信号损失,这些因素都提高了正常解剖结构与异常病变的整体可视化质量,从而使准确测量ADC值成为可能[14,17,20]。FOCUS DWI序列扫描时间为1 min 30 s,相比于其他DWI技术,如刀锋技术的5 min 51 s[21]、扩散敏感3D快速回波序列的5 min 22 s[22]等时间均明显缩短,序列扫描时间短可以减少热量产生及运动伪影,尤其适宜于儿童及老人。

       在DWI序列中,不同组织间的信号强度和对比度的差异取决于b值,还没有研究表明评价正常垂体和垂体疾病的最佳b值。目前在同样磁场不均匀的颈部及肺部DWI序列中较多使用小于300 s/mm2的较低b值[23, 24],此外,将DWI应用于肾炎诊断[25]及早期探索垂体大腺瘤性质[26]时b值分别设置为200 s/mm2及300 s/mm2。研究表明,当b值<200 s/mm2时扩散信号衰减包括水分子扩散运动及毛细血管灌注效应,且b值越小灌注效应越明显,b值>200 s/mm2时基本反映水分子扩散运动[27, 28];垂体微腺瘤作为生物学表现较为良性的肿瘤,其扩散受限并不明显,故b值较高时容易漏诊[29];此外,磁共振信号强度和DWI的信噪比随着b值的增加而减小[12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30],故本研究取200 s/mm2作为诊断泌乳素型垂体微腺瘤的b值,能保证图像较高的信噪比且扩散信号受毛细血管微循环灌注效应较小。以往评估正常垂体及垂体微小病变的DWI序列多为矢状位[31, 32, 33]或冠状位成像[21, 22,34],因动态增强扫描通常为冠状位,DWI冠状位较矢状位能更好地显示及评估垂体微小病变及两侧颈内动脉等,故本研究尝试使用冠状位DWI来评估垂体微腺瘤及正常垂体组织。

3.2 泌乳素型垂体微腺瘤及高泌乳素血症垂体ADC值特点分析

       本研究所测得高泌乳素血症正常垂体前叶平均ADC值范围为(1.57~2.75)×10-3 mm2/s,以及既往文献中正常垂体前叶ADC值范围均较大[17,22,33],为了使不同个体间垂体ADC值具有可比性并进一步鉴别高泌乳素血症患者是否伴有垂体微腺瘤,故本研究将rADC微腺瘤和rADC高泌乳素血症进行对比分析,即将rADC作为鉴别高泌乳素血症与泌乳素型垂体微腺瘤的诊断指标。本研究发现以rADC=0.82作为诊断阈值时其敏感度和特异度分别为63%和91%,敏感度较低可能因为本研究样本含量较少及诊断模型简单,数据代表性不足,测得垂体前叶各区域ADC值有差异,当rADC<0.82时不能表明一定患有垂体微腺瘤,此结论需扩大样本含量进一步研究。

3.3 本研究局限性

       首先,约三分之一病例因FOCUS DWI图像质量较差而被排除导致最终样本量较少,后期应进一步探索图像较差患者的特点并进一步优化序列参数;其次,本研究仅选取b值为200 s/mm2,后续研究中应尝试研究不同b值时垂体显示效果及诊断效能的比较;最后,泌乳素型垂体微腺瘤患者首选药物治疗,病例多无病理学结果,但本研究经长期随访血清泌乳素水平及多次MRI复查综合诊断能满足较高准确率。

       综上所述,FOCUS DWI可以在较短的扫描时间内获得正常垂体和垂体微腺瘤的图像,具有较高的分辨率与较少的磁敏感伪影,该技术可鉴别高泌乳素血症垂体组织及泌乳素型垂体微腺瘤,为早期精准诊断垂体微腺瘤提供参考,并为临床制订最佳治疗方案提供有价值的依据。

[1]
Chanson P, Maiter D. The epidemiology, diagnosis and treatment of Prolactinomas: The old and the new[J/OL]. Best Pract Res Clin Endocrinol Metab, 2019, 33(2): 101290 [2022-08-12]. https://pubmed.ncbi.nlm.nih.gov/31326373/. DOI: 10.1016/j.beem.2019.101290.
[2]
Fukuhara N, Nishiyama M, Iwasaki Y. Update in Pathogenesis, Diagnosis, and Therapy of Prolactinoma[J/OL]. Cancers (Basel), 2022, 14(15): 3604 [2022-08-12]. https://pubmed.ncbi.nlm.nih.gov/35892862/. DOI: 10.3390/cancers14153604.
[3]
OʼLaughlin D. Infertility secondary to a pituitary adenoma[J]. JAAPA, 2018, 31(8): 26-28. DOI: 10.1097/01.JAA.0000533659.78664.a5.
[4]
Cocks Eschler D, Javanmard P, Cox K, et al. Prolactinoma through the female life cycle[J]. Endocrine, 2018, 59(1): 16-29. DOI: 10.1007/s12020-017-1438-7.
[5]
Eisenhut F, Schlaffer SM, Hock S, et al. Ultra-High-Field 7 T Magnetic Resonance Imaging Including Dynamic and Static Contrast-Enhanced T1-Weighted Imaging Improves Detection of Secreting Pituitary Microadenomas[J]. Invest Radiol, 2022, 57(9): 567-574. DOI: 10.1097/RLI.0000000000000872.
[6]
MacFarlane J, Bashari WA, Senanayake R, et al. Advances in the Imaging of Pituitary Tumors[J]. Endocrinol Metab Clin North Am, 2020, 49(3): 357-373. DOI: 10.1016/j.ecl.2020.06.002.
[7]
Cironi KA, Decater T, Iwanaga J, et al. Arterial Supply to the Pituitary Gland: A Comprehensive Review[J]. World Neurosurg, 2020, 142: 206-211. DOI: 10.1016/j.wneu.2020.06.221.
[8]
Friedman TC, Zuckerbraun E, Lee ML, et al. Dynamic pituitary MRI has high sensitivity and specificity for the diagnosis of mild Cushing's syndrome and should be part of the initial workup[J]. Horm Metab Res, 2007, 39(6): 451-456. DOI: 10.1055/s-2007-980192.
[9]
Taheri MS, Ghomi Z, Mirshahi R, et al. Usefulness of subtraction images for accurate diagnosis of pituitary microadenomas in dynamic contrast-enhanced magnetic resonance imaging[J/OL]. Acta Radiol, 2022, 2841851221107344 [2022-08-12]. https://pubmed.ncbi.nlm.nih.gov/35731731/. DOI: 10.1177/02841851221107344.
[10]
Kleinschmidt-DeMasters BK. Histological features of pituitary adenomas and sellar region masses[J]. Curr Opin Endocrinol Diabetes Obes, 2016, 23(6): 476-484. DOI: 10.1097/MED.0000000000000293.
[11]
邓保娣, 李震, 胡道予, 等. 小视野扩散加权成像在宫颈癌中的临床价值[J]. 磁共振成像, 2020, 11(7): 487-492. DOI: 10.12015/issn.1674-8034.2020.07.002.
Deng BD, Li Z, Hu DY, et al. Clinical value of reduced fieldof-view diffusion-weighted imaging in cervical cancer. Chin J Magn Reson Imaging, 2020, 11(7): 487-492. DOI: 10.12015/issn.1674-8034.2020.07.002.
[12]
Foesleitner O, Sulaj A, Sturm V, et al. Diffusion MRI in Peripheral Nerves: Optimized b Values and the Role of Non-Gaussian Diffusion[J]. Radiology, 2022, 302(1): 153-161. DOI: 10.1148/radiol.2021204740.
[13]
Zhang J, Zhao Z, Dong L, et al. Differentiating between non-functioning pituitary macroadenomas and sellar meningiomas using ADC[J]. Endocr Connect, 2020, 9(12): 1233-1239. DOI: 10.1530/EC-20-0434.
[14]
周爽, 查云飞, 邢栋, 等. 小视野DWI评价膝关节骨挫伤骨髓水肿的可行性研究[J]. 磁共振成像, 2021, 12(2): 52-56. DOI: 10.12015/issn.1674-8034.2021.02.012.
Zhou S, Zha YF, Xing D, et al. The feasibility of reduced field-of-view DWI in the evaluation of bone marrow edema in knee joint contusion[J]. Chin J Magn Reson Imaging, 2021, 12(2): 52-56. DOI: 10.12015/issn.1674-8034.2021.02.012.
[15]
Yang H, Cui X, Zheng X, et al. Preliminary quantitative analysis of vertebral microenvironment changes in type 2 diabetes mellitus using FOCUS IVIM-DWI and IDEAL-IQ sequences[J]. Magn Reson Imaging, 2021, 84: 84-91. DOI: 10.1016/j.mri.2021.09.008.
[16]
王远星, 白汉林, 龚博. 肾脏磁共振小视野高分辨DWI在肾脏肿瘤诊断中的应用[J]. 实用癌症杂志, 2021, 36(7): 1190-1193. DOI: 10.3969/j.issn.1001-5930.2021.07.037.
Wang XY, Bai HL, Gong B. Application of high-resolution reduced field of vision DWI of renal magnetic resonance imaging in the diagnosis of renal tumors[J]. Pract J Cancer, 2021, 36(7): 1190-1193. DOI: 10.3969/j.issn.1001-5930.2021.07.037.
[17]
Wang M, Liu H, Wei X, et al. Application of Reduced-FOV Diffusion-Weighted Imaging in Evaluation of Normal Pituitary Glands and Pituitary Macroadenomas[J]. AJNR Am J Neuroradiol, 2018, 39(8): 1499-1504. DOI: 10.3174/ajnr.A5735.
[18]
谢晟. 垂体MRI的临床应用要点[J]. 中华放射学杂志, 2019, 53(9): 797-800. DOI: 10.3760/cma.j.issn.1005-1201.2019.09.021.
Xie S. Clinical application of MRI in pituitary diseases[J]. Chin J Radiol, 2019, 53(9): 797-800. DOI: 10.3760/cma.j.issn.1005-1201.2019.09.021
[19]
张玉梅, 王青, 何敬振, 等. DCE-MRI血管功能参数在垂体微腺瘤诊断中的应用研究[J]. 医学影像学杂志, 2017, 27(2): 189-194.
Zhang YM, Wang Q, He JZ, et al. Diagnostic value of Vascular functionnal parameters in dynamic contrast-enhanced MRI for pituitary microadenomas[J]. J Med Imaging, 2017, 27(2): 189-194.
[20]
Feng Z, Min X, Sah VK, et al. Comparison of field-of-view (FOV) optimized and constrained undistorted single shot (FOCUS) with conventional DWI for the evaluation of prostate cancer[J]. Clin Imaging, 2015, 39(5): 851-855. DOI: 10.1016/j.clinimag.2015.03.004.
[21]
富青, 孔祥闯, 刘定西, 等. 刀锋技术快速梯度自旋回波扩散加权成像改善鞍区扫描图像质量的价值[J]. 中华放射学杂志, 2022, 56(1): 81-86. DOI: 10.3760/cma.j.cn112149-20210223-00148.
Fu Q, Kong XC, Liu DX, et al. Clinical application of turbo gradient and spin echo-BLADE diffusion weighted imaging at the sellar region[J]. Chin J Radiol, 2022, 56(1): 81-86. DOI: 10.3760/cma.j.cn112149-20210223-00148.
[22]
Hiwatashi A, Togao O, Yamashita K, et al. Evaluation of diffusivity in pituitary adenoma: 3D turbo field echo with diffusion-sensitized driven-equilibrium preparation[J/OL]. Br J Radiol, 2016, 89(1063): 20150755 [2022-08-12]. https://pubmed.ncbi.nlm.nih.gov/27187598/. DOI: 10.1259/bjr.20150755.
[23]
Bozgeyik Z, Coskun S, Dagli AF, et al. Diffusion-weighted MR imaging of thyroid nodules[J]. Neuroradiology, 2009, 51(3): 193-198. DOI: 10.1007/s00234-008-0494-3.
[24]
赖海辉, 雷强, 肖俊强, 等. 扩散加权成像对良、恶性肺实性结节的诊断价值[J]. 实用放射学杂志, 2021, 37(12): 1959-1962, 2005. DOI: 10.3969/j.issn.1002-1671.2021.12.008.
Lai HH, Lei Q, Xiao JQ, et al. Diagnostic value of diffusion weighted imaging in pulmonary solid benign and malignant lesions[J]. J Pract Radiol, 2021, 37(12): 1959-1962, 2005. DOI: 10.3969/j.issn.1002-1671.2021.12.008.
[25]
Su T, Yang X, Wang R, et al. Characteristics of diffusion-weighted and blood oxygen level-dependent magnetic resonance imaging in Tubulointerstitial nephritis: an initial experience[J/OL]. BMC Nephrol, 2021, 22(1): 237 [2022-08-12]. DOI: 10.1186/s12882-021-02435-6.
[26]
邢建明, 胡春洪, 朱默. 垂体大腺瘤1.5T MR扩散加权成像的参数优化[J]. 苏州大学学报:医学版, 2010, 30(4): 837-841.
Xing JM, Hu CH, Zhu M. Parameters Optimization of Diffusion-weighted Imaging of the Pituitary Macroadenoma at 1.5T MR[J]. Suzhou Univ J Med Sci, 2010, 30(4): 837-841.
[27]
Takahara T, Kwee TC. Low b-value diffusion-weighted imaging:emerging applications in the body[J]. J Magn Reson Imaging, 2012, 35(6): 1266-1273. DOI: 10.1002/jmri.22857.
[28]
张蕊, 白岩, 魏巍, 等. 体素内不相干运动成像和扩散峰度成像基本原理及其在中枢神经系统疾病中的应用[J]. 磁共振成像, 2020, 11(9): 804-808. DOI: 10.12015/issn.1674-8034.2020.09.019.
Zhang R, Bai Y, Wei W, et al. Basic principles of intravoxel incoherent motion and diffusional kurtosis imaging and their applications in central nervous system diseases[J]. Chin J Magn Reson Imaging, 2020, 11(9): 804-808. DOI: 10.12015/issn.1674-8034.2020.09.019.
[29]
李晓强, 姚旬, 杨大为, 等. 扩散加权成像对肝局灶病变检出的多中心研究[J]. 中国医学影像学杂志, 2015, 23(5): 356-360. DOI: 10.3969/j.issn.1005-5185.2015.05.009.
Li XQ, Yao X, Yang DW, et al. Detection of Focal Liver Lesions with Diffusion Weighted Imaging: Results of A Multi-center Clinical Trial[J]. Chin J Med Imaging, 2015, 23(5): 356-360. DOI: 10.3969/j.issn.1005-5185.2015.05.009.
[30]
Su CQ, Zhang X, Pan T, et al. Texture Analysis of High b-Value Diffusion-Weighted Imaging for Evaluating Consistency of Pituitary Macroadenomas[J]. J Magn Reson Imaging, 2020, 51(5): 1507-1513. DOI: 10.1002/jmri.26941.
[31]
Kamimura K, Nakajo M, Fukukura Y, et al. Intravoxel Incoherent Motion in Normal Pituitary Gland: Initial Study with Turbo Spin-Echo Diffusion-Weighted Imaging[J]. AJNR Am J Neuroradiol, 2016, 37(12): 2328-2333. DOI: 10.3174/ajnr.A4930.
[32]
Khant ZA, Azuma M, Kadota Y, et al. Evaluation of pituitary structures and lesions with turbo spin-echo diffusion-weighted imaging[J]. J Neurol Sci, 2019, 405: 116390 [2022-08-12]. https://pubmed.ncbi.nlm.nih.gov/31476623/. DOI: 10.1016/j.jns.2019.07.008.
[33]
Hiwatashi A, Yoshiura T, Togao O, et al. Evaluation of diffusivity in the anterior lobe of the pituitary gland: 3D turbo field echo with diffusion-sensitized driven-equilibrium preparation[J]. AJNR Am J Neuroradiol, 2014, 35(1): 95-98. DOI: 10.3174/ajnr.A3620.
[34]
Lu YP, Liu H, Zhou K, et al. Diffusion-weighted imaging of the sellar region: a comparison study of BLADE and single-shot echo planar imaging sequences[J]. Eur J Radiol, 2014, 83(7): 1239-1244. DOI: 10.1016/j.ejrad.2014.03.011.

上一篇 基于多参数MRI影像组学特征融合模型鉴别高级别胶质瘤与单发性脑转移瘤
下一篇 T2* mapping功能磁共振成像定量评估糖尿病性黄斑水肿视网膜出血的价值
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2