分享:
分享到微信朋友圈
X
临床研究
表观扩散系数值评估较低级别胶质瘤IDH-1突变状态和瘤细胞增殖活性的价值
刘显旺 柯晓艾 周青 李昇霖 邓娟 薛彩强 黄晓宇 孙秋 周俊林

Cite this article as: Liu XW, Ke XA, Zhou Q, et al. The value of apparent diffusion coefficient value in evaluating the IDH-1 mutation status and tumor cell proliferation activity of lower-grade gliomas[J]. Chin J Magn Reson Imaging, 2022, 13(8): 13-18.本文引用格式:刘显旺, 柯晓艾, 周青, 等. 表观扩散系数值评估较低级别胶质瘤IDH-1突变状态和瘤细胞增殖活性的价值[J]. 磁共振成像, 2022, 13(8): 13-18. DOI:10.12015/issn.1674-8034.2022.08.003.


[摘要] 目的 探讨表观扩散系数(apparent diffusion coefficient, ADC)值在较低级别胶质瘤(lower-grade gliomas, LGG)异柠檬酸脱氢酶-1(isocitrate dehydrogenase 1, IDH-1)突变状态和瘤细胞增殖活性中的评估价值。材料与方法 回顾性分析经病理证实并测定IDH-1突变状态和Ki-67增殖指数的44例LGG患者病例,其中IDH-1突变型24例,IDH-1野生型20例。在ADC图上测量病灶实质的最小ADC值(ADCmin)、平均ADC值(ADCmean)和对侧镜像正常脑白质的ADC值,计算相对最小ADC值(rADCmin)和相对平均ADC值(rADCmean)。比较LGG IDH-1突变型和IDH-1野生型组间各ADC值间差异,绘制受试者工作特征(receiver operating characteristic, ROC)曲线分析各ADC值对IDH-1突变状态的评估效能,并分析其与Ki-67增殖指数间的相关性。结果 IDH-1突变型组的ADCmin、ADCmean、rADCmin和rADCmean值均高于IDH-1野生型组,组间差异具有统计学意义(P均<0.05)。ROC曲线结果显示各参数均能对IDH-1突变型和IDH-1野生型LGG进行有效区分,其中,rADCmin鉴别效能最佳,以0.978为最佳截止值,相应的曲线下面积(area under the curve, AUC)、敏感度、特异度、准确度、阳性预测值和阴性预测值分别为0.838、80.00%、83.33%、81.82%、80.00%和83.30%。LGG ADCmin、ADCmean、rADCmin和rADCmean与Ki-67增殖指数间均呈不同程度的负相关关系(r=-0.552、-0.590、-0.532、-0.579,P均<0.05)。结论 ADC值可用于评估LGG IDH-1突变状态,对于肿瘤细胞增殖活性的评估也具有一定的价值。
[Abstract] Objective To investigate the evaluation value of apparent diffusion coefficient (ADC) value in lower-grade gliomas (LGG) isocitrate dehydrogenase 1 (IDH-1) mutation status and tumor cell proliferation activity.Materials and Methods Forty-four patient cases with LGG were confirmed by pathology, and measured IDH-1 mutation status and the Ki-67 proliferation index was retrospectively analyzed, including 24 cases of IDH-1 mutant-type and 20 cases of IDH-1 wild-type. The minimum ADC value (ADCmin), mean ADC value (ADCmean) of the lesion parenchyma, and the ADC value of the contralateral mirror normal white matter on the ADC maps were measured, and the relative minimum ADC value (rADCmin) and relative mean ADC value (rADCmean) were calculated. The differences in ADC values between the two groups were compared, and receiver operating characteristic (ROC) curves were drawn to evaluate the differential diagnostic efficacy. The Ki-67 proliferation index of the solid tumor components was also measured to explore its relationship with ADC values.Results The ADCmin, ADCmean, rADCmin, and rADCmean values in the IDH-1 mutant-type group were higher than those in the IDH-1 wild-type group, and the differences between the groups were statistically significant (all P<0.05). ROC results show that all parameters can effectively distinguish IDH-1 mutant-type and IDH-1 wild-type LGG. Among them, rADCmin has the best discrimination efficiency, and 0.978 is the best cut-off value, with area under the curve (AUC), sensitivity, specificity, accuracy, positive predictive value, and negative predictive value was 0.838, 80.00%, 83.33%, 81.82%, 80.00%, and 83.30%, respectively. ADCmin, ADCmean, rADCmin, rADCmean and Ki-67 proliferation index showed different degrees of negative correlation (r=-0.552, -0.590, -0.532, -0.579, all P<0.05).Conclusions ADC values can be used to evaluate LGG IDH-1 mutation status, and it also has a certain value for evaluating tumor cell proliferation activity.
[关键词] 脑胶质瘤;较低级别胶质瘤;异柠檬酸脱氢酶;Ki-67增殖指数;磁共振成像;表观扩散系数
[Keywords] brain gliomas;lower-grade gliomas;isocitrate dehydrogenase;Ki-67 proliferation index;magnetic resonance imaging;apparent diffusion coefficient

刘显旺    柯晓艾    周青    李昇霖    邓娟    薛彩强    黄晓宇    孙秋    周俊林 *  

兰州大学第二医院放射科,兰州大学第二临床医学院,甘肃省医学影像重点实验室,医学影像人工智能甘肃省国际科技合作基地,兰州 730030

周俊林,E-mail:LZUzjl601@163.com

作者利益冲突声明:全体作者均声明无利益冲突。


基金项目: 国家自然科学基金 81772006,82071872 甘肃省自然科学基金项目 21JR11RA105 甘肃省医学影像重点实验室开放基金 GSYX202007
收稿日期:2021-11-14
接受日期:2022-07-27
中图分类号:R445.2  R730.264 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2022.08.003
本文引用格式:刘显旺, 柯晓艾, 周青, 等. 表观扩散系数值评估较低级别胶质瘤IDH-1突变状态和瘤细胞增殖活性的价值[J]. 磁共振成像, 2022, 13(8): 13-18. DOI:10.12015/issn.1674-8034.2022.08.003

       较低级别胶质瘤(lower-grade gliomas, LGG)包括世界卫生组织(World Health Organization, WHO)定义的Ⅱ~Ⅲ级的胶质瘤,约占所有成人颅内原发性中枢神经系统肿瘤的22%[1, 2, 3],与WHO Ⅳ级的高级别胶质瘤相比,LGG生长相对缓慢,但存在恶变风险[4]。异柠檬酸脱氢酶-1(isocitrate dehydrogenase 1, IDH-1)突变状态是影响LGG预后的重要因素,IDH-1突变型胶质瘤对放化疗更为敏感,预后常优于IDH-1野生型胶质瘤[5, 6],有研究[7]表明LGG患者IDH-1突变率高达70%。Ki-67增殖指数常用于评估细胞增殖活性,与肿瘤恶性程度密切相关[8]。因此,术前准确评估LGG IDH-1突变状态和Ki-67增殖指数,对于患者治疗方案的制订及预后评估具有重要意义。常规MRI对LGG IDH-1突变状态和瘤细胞增殖活性的评估价值有限,扩散加权成像(diffusion weighted imaging, DWI)主要用于反映细胞内外水分子的运动情况,并可以通过表观扩散系数(apparent diffusion coefficient, ADC)值进行定量评估,已广泛应用于脑肿瘤的分级、鉴别及预后评估之中[9, 10, 11]。但鲜有研究使用ADC值预测LGG IDH-1突变状态,并评估其与Ki-67增殖指数间的关系。本研究旨在探讨ADC值在评估LGG IDH-1突变状态和瘤细胞增殖活性标记物Ki-67增殖指数中的价值。

1 材料与方法

1.1 一般资料

       回顾性分析2018年1月至2021年10月兰州大学第二医院经病理证实的LGG患者病例。纳入标准:(1)经手术病理证实为LGG,有明确的IDH-1突变状态和Ki-67增殖指数测定结果;(2)术前2周行头颅T1WI、T2WI和DWI序列扫描。排除标准:(1)近期接受放、化疗等干预措施;(2)MRI图像质量差,不能满足ADC值测量需要。最终共纳入44例LGG患者,其中IDH-1突变型24例,男14例,女10例,年龄29~66(46.54±9.15)岁;IDH-1野生型20例,男9例,女11例,年龄11~72(44.30±16.90)岁。本研究经兰州大学第二医院伦理委员会批准,免除受试者知情同意,批准文号:2020A-070。

1.2 扫描仪器与参数

       MR检查采用SiemensVerio 3.0 T超导扫描仪,患者取仰卧位,32通道头线圈。快速自旋回波(turbo spin echo, TSE)-T1WI扫描参数:TR 250 ms,TE 2.48 ms,FOV 22 cm×22 cm,矩阵256×256,层厚5 mm,层间距1.0 mm;TSE-T2WI扫描参数:TR 4000 ms,TE 96 ms,FOV 22 cm×22 cm,矩阵256×256,层厚5 mm,层间距1.0 mm;平面回波(echo planar, EP)-DWI扫描参数:TR 4500 ms,TE 102 ms,层厚5 mm,层间距1.0 mm,矩阵256×256,b值分别为0、1000 s/mm2

1.3 图像分析和ADC值测量

       DWI原始图像传入ADW 4.6工作站后自动生成ADC图像,由2名具有10年以上神经影像诊断经验的副主任医师对所有图像采用双盲法进行阅片。避开坏死、囊变和出血区,于肿瘤实性成分进行ADC值的测量,连续测量2~3个层面,每个测量层面上放置8~12个大小为15~20 mm2的感兴趣区(region of interest, ROI),所有ROI中最低的ADC值即为ADCmin值,所有ADC值的平均值即为ADCmean值,同时测量对侧镜像正常脑白质的ADC值,以计算相对最小ADC值(rADCmin=ADCmin/正常脑白质ADC)和相对平均ADC值(rADCmean=ADCmean/正常脑白质ADC)。将两名医师测量的ADC值取均值后作为最终结果。

1.4 病理学检查

       所有肿瘤标本经手术切除后行HE染色后进行病理学分级,同时进行免疫组织化学染色以测定其IDH-1突变状态和Ki-67增殖指数。IDH-1突变检测:聚合酶链式反应(polymerase chain reaction, PCR)扩增测序。Ki-67增殖指数:使用单克隆小鼠抗人Ki-67抗体进行Ki-67蛋白的免疫组化染色后,在瘤细胞染色密度最高的区域计数1000个细胞的染色情况,Ki-67增殖指数为阳性细胞数/总细胞计数,计数3次,计算平均值作为最终测量结果。

1.5 统计学方法

       采用MedCalc软件进行统计学分析,P<0.05认为差异有统计学意义。计量资料经正态分布检验后用均数±标准差表示,并使用独立样本t检验进行组间差异性比较。绘制受试者工作特征(receiver operating characteristic, ROC)曲线评估各ADC值对LGG IDH-1突变状态的评估效能。同时,采用Pearson相关分析评估LGG ADCmin、ADCmean、rADCmin和rADCmean与Ki-67增殖指数间的相关性。

2 结果

2.1 IDH-1突变型与IDH-1野生型组间ADC值比较及ROC曲线分析

       LGG IDH-1突变型组的ADCmin、ADCmean、rADCmin和rADCmean值均高于IDH-1野生型组,组间差异具有统计学意义(P均<0.05),见表1图1。ROC结果显示各ADC值均能对 IDH-1突变型和IDH-1野生型LGG进行有效区分,其中,rADCmin鉴别效能最佳,以0.978为最佳截止值,相应的AUC、敏感度、特异度、准确度、阳性预测值和阴性预测值分别为0.838、80.00%、83.33%、81.82%、80.00%和83.30%,见表2图2。IDH-1突变型和IDH-1野生型LGG 典型病例见图3图4.

图1  箱式图显示LGG IDH-1突变型组的ADCmin、ADCmean、rADCmin、rADCmean均分别大于IDH-1野生型组。
图2  ADCmin、ADCmean、rADCmin、rADCmean预测LGG IDH-1突变状态的ROC曲线,rADCmin预测效能最佳,AUC值为0.838。LGG:较低级别胶质瘤;IDH-1:异柠檬酸脱氢酶-1;ADCmin:最小表观扩散系数;ADCmean:平均表观扩散系数;rADCmin:相对最小表观扩散系数;rADCmean:相对平均表观扩散系数;ROC:受试者工作特征;AUC:曲线下面积。
Fig. 1  Box plots showing that ADCmin, ADCmean, rADCmin, and rADCmean in the LGG IDH-1 mutant group were all greater than those in the IDH-1 wild-type group, respectively.
Fig. 2  ROC curves of ADCmin, ADCmean, rADCmin, and rADCmean for predicting LGG IDH-1 mutation status, and rADCmin had the best predictive efficacy with an AUC value of 0.838. ADCmin: minimum apparent diffusion coefficient; ADCmean: mean apparent diffusion coefficient; rADCmin: relative minimum apparent diffusion coefficient; rADCmean: relative mean apparent diffusion coefficient; LGG: lower grade glioma; IDH-1: isocitrate dehydrogenase 1; ROC: receiver operating characteristic; AUC: area under the curve.
图3  男,40岁,LGG(WHO Ⅲ级,IDH-1突变型)。3A~3D:左侧颞叶混杂信号占位,呈囊实性改变,与周围组织分界欠清晰,并可见轻度水肿,实性成分DWI呈高信号,ADC呈低信号,ADCmin=0.879×10-3 mm2/s,ADCmean=0.931×10-3 mm2/s,rADCmin=1.204,rADCmean=1.274;3E:病理图示瘤细胞呈弥漫性排列,胞浆嗜酸,核浆比增大,可见异型核细胞及核分裂象(HE ×100);3F:免疫组化图示肿瘤细胞增殖活跃,Ki-67增殖指数约为45%(HC ×400)。LGG:较低级别胶质瘤;IDH-1:异柠檬酸脱氢酶-1;DWI:扩散加权成像;ADC:表观扩散系数;ADCmin:最小表观扩散系数;ADCmean:平均表观扩散系数;rADCmin:相对最小表观扩散系数;rADCmean:相对平均表观扩散系数。
Fig. 3  Male, 40 years old, LGG (WHO class Ⅲ, IDH-1 mutant type). 3A-3D: A mixed-signal mass in the left temporal lobe, showing cystic and solid changes, the boundary with the surrounding tissue is not clear, with mild edema, the solid component is a high signal on DWI, and ADC is a low signal, ADCmin=0.879×10-3 mm2/s, ADCmean=0.931×10-3 mm2/s, rADCmin=1.204, rADCmean=1.274; 3E: The tumor cells are diffusely arranged on the pathology, with eosinophilic cytoplasm, increased nuclear-to-cytoplasmic ratio, and atypical nuclear cells can be seen and mitotic figures (HE ×100); 3F: Immunohistochemistry shows that tumor cells proliferate actively, and the Ki-67 proliferation index is about 45% (HC ×400). LGG: lower grade glioma; IDH-1: isocitrate dehydrogenase 1; DWI: diffusion weighted imaging; ADC: apparent diffusion coefficient; ADCmin: minimum apparent diffusion coefficient; ADCmean: mean apparent diffusion coefficient; rADCmin: relative minimum apparent diffusion coefficient; rADCmean: relative mean apparent diffusion coefficient.
图4  男,58岁,LGG(WHO Ⅲ级,IDH-1野生型)。4A~4D:右侧颞叶混杂信号占位,呈囊实性改变,与周围组织分界不清,并可见明显水肿,病灶实性成分DWI呈高信号,ADC呈低信号,ADCmin=0.571×10-3 mm2/s,ADCmean=0.685×10-3 mm2/s,rADCmin=0.837,rADCmean=1.004;4E:病理图示瘤细胞排列密集,核浆比增大,核深染,异型性明显,核分裂象多见(HE ×100);4F:基因测序图示为IDH-1野生型。LGG:较低级别胶质瘤;IDH-1:异柠檬酸脱氢酶-1;DWI:扩散加权成像;ADC:表观扩散系数;ADCmin:最小表观扩散系数;ADCmean:平均表观扩散系数;rADCmin:相对最小表观扩散系数;rADCmean:相对平均表观扩散系数。
Fig. 4  Male, 58 years old, LGG (WHO grade Ⅲ, IDH-1 wild type). 4A-4D: A mixed-signal mass in the right temporal lobe, showing cystic and solid changes, the boundary with the surrounding tissue is not clear, with obvious edema, the solid component is a high signal on DWI, and ADC is a low signal, ADCmin=0.571×10-3 mm2/s, ADCmean=0.685×10-3 mm2/s, rADCmin=0.837, and rADCmean=1.004; 4E: The pathological image shows that the tumor cells are densely arranged, the nucleocytoplasmic ratio is increased, the nucleus is hyperchromatic, the atypia is obvious, and mitoses are common (HE ×100); 4F: The gene sequencing image shows IDH-1 wild type. LGG: lower grade glioma; IDH-1: isocitrate dehydrogenase 1; DWI: diffusion weighted imaging; ADC: apparent diffusion coefficient; ADCmin: minimum apparent diffusion coefficient; ADCmean: mean apparent diffusion coefficient; rADCmin: relative minimum apparent diffusion coefficient; rADCmean: relative mean apparent diffusion coefficient.
表1  IDH-1突变型与IDH-1野生型LGG组间ADC值比较
Tab. 1  Comparison of ADC values between IDH-1 mutant and IDH-1 wild-type LGG groups
表2  ADC值预测LGG IDH-1突变状态的ROC曲线分析
Tab. 2  ROC curve analysis of ADC values in predicting LGG IDH-1 mutation status

2.2 ADC值与Ki-67增殖指数的相关性分析

       LGG ADCmin、ADCmean、rADCmin和rADCmean与Ki-67增殖指数间均呈不同程度的负相关关系(r=-0.552、-0.590、-0.532、-0.579,P均<0.05),即随着Ki-67增殖指数的增加,各ADC值均呈逐渐减低的趋势,见图5

图5  相关性线性热图示LGG ADCmin、ADCmean、rADCmin、rADCmean均与Ki-67增殖指数呈不同程度的负相关关系,相关系数r分别为-0.552、-0.590、-0.532、-0.579。LGG:较低级别胶质瘤;ADCmin:最小表观扩散系数;ADCmean:平均表观扩散系数;rADCmin:相对最小表观扩散系数;rADCmean:相对平均表观扩散系数。
Fig. 5  Correlation linear heat map showing LGG ADCmin, ADCmean, rADCmin, and rADCmean all showed different degrees of negative correlation with Ki-67 proliferation index, with correlation coefficients r of -0.552, -0.590, -0.532, and -0.579, respectively. LGG: lower grade glioma; ADCmin: minimum apparent diffusion coefficient; ADCmean: mean apparent diffusion coefficient; rADCmin: relative minimum apparent diffusion coefficient; rADCmean: relative average apparent diffusion coefficient.

3 讨论

       IDH-1突变状态和Ki-67增殖指数与LGG患者预后密切相关[12, 13]。本研究比较了IDH-1野生型LGG和IDH-1突变型LGG间ADC值差异,并进一步分析了LGG ADC值与Ki-67增殖指数间的关系,结果表明ADC值可用于术前评估LGG IDH-1突变状态,且与Ki-67增殖指数间呈负相关关系,提示ADC值在LGG术前评估中具有重要价值。据我们所知,这是第一个使用ADC值评估LGG IDH-1突变状态,并探讨其与Ki-67增殖指数间关系的研究。

3.1 IDH-1突变型与IDH-1野生型组间ADC值的对比分析

       DWI作为MRI功能成像手段之一,主要通过反映组织结构中细胞内外水分子运动的变化情况来提供有关肿瘤微环境的信息,并能以ADC值的形式进行简单有效的量化评估[14, 15]。ADC值大小与肿瘤血管生成、细胞增殖活性、细胞密度等因素密切相关[16, 17, 18]。既往研究[15, 16, 17,19]表明,肿瘤侵袭性较强时,肿瘤新生血管增多,肿瘤细胞增殖活性明显增加引起肿瘤细胞数目增多,肿瘤细胞相对缺氧引起的细胞毒性水肿也会导致细胞体积的增大,细胞数目和体积增加的同时,还伴随异形核增多、核浆比例增大等改变,多种因素综合作用,减少了水分子内外运动的空间,限制了水分子的扩散运动,最终导致ADC值的降低。IDH-1野生型LGG异质性较强,肿瘤细胞代谢旺盛,新生肿瘤血管数目增多,丰富的血供及营养物质的输送,极大提高了LGG肿瘤细胞的增殖能力,也导致了IDH-1野生型LGG具有更强的侵袭性,与IDH-1突变型LGG相比,IDH-1野生型LGG肿瘤细胞数目、密度及核异型性明显增加,使得细胞内外的水分子扩散程度受到明显限制,因此表现为比IDH-1突变型LGG更低的ADC值[20, 21]。本研究结果显示LGG IDH-1突变型的ADCmin、ADCmean均显著高于IDH-1野生型,与既往研究结果相一致[22, 23]。Villanueva-Meye等[24]对比78例IDH-1突变型和22例IDH-1野生型弥漫性胶质瘤ADC值间差异后发现,IDH-1野生型的最小ADC值、平均ADC值均显著低于IDH-1突变型,与本研究结果相仿。本研究还发现ADCmin在评估LGG IDH-1突变状态时的效能优于ADCmean,AUC值达0.829,推测原因可能是由于ADCmin值测量区域代表肿瘤组织内肿瘤细胞最密集、增殖最活跃的区域,能最真实客观地反映肿瘤的恶性程度,从而最大程度地减少肿瘤异质性所导致的肿瘤组织成分分布不均匀对所测ADC值的干扰。此外,为消除不同患者个体间生理差异对测量ADC值的影响,本研究引入相对ADC值的概念,对测量的ADC值进行标准化处理,即用所测病灶的ADC值和对侧镜像正常脑白质的ADC值的比值来表示,ROC分析结果显示,rADCmin和rADCmean的评估效能分别优于ADCmin和ADCmean,且在所有ADC值中,rADCmin具有最佳的评估效能,其区分IDH-1突变型和IDH-1野生型LGG的AUC、敏感度、特异度、准确度、阳性预测值和阴性预测值分别为0.838、80.00%、83.33%、81.82%、80.00%和83.30%,这与Tan等[25]使用不同ADC值评估弥漫性星型细胞瘤IDH-1突变状态的研究相一致。以上结果或表明,ADCmin值,特别是标准化处理后的rADCmin值能更真实可靠地反映肿瘤的病理生理学特点,或更有利于脑胶质瘤的综合性评估。

3.2 LGG ADC值与Ki-67增殖指数表达的相关性分析

       Ki-67是一种参与细胞周期及DNA合成的核内蛋白,存在于细胞增殖周期中的G1、S和G2期,而在G0期和静止细胞中表达水平较低[26, 27],Ki-67增殖指数是常被用于评估Ki-67表达水平的定量参数,主要用于反映细胞增殖活性,与瘤细胞增殖情况和肿瘤恶性程度密切相关,在评估肿瘤侵袭性及患者预后等方面具有重要意义[28, 29]。相关研究[30, 31, 32]表明,Ki-67增殖指数随着肿瘤恶性程度及侵袭性的增加而增加,且与ADC值间存在负相关性。IDH-1野生型LGG的细胞增殖能力高于IDH-1突变型LGG,表现为较高水平的Ki-67增殖指数和较低的ADC值[19, 20]。本研究结果显示LGG的ADCmin、ADCmean、rADCmin、rADCmean和Ki-67增殖指数均呈不同程度的负相关关系,与既往文献报道一致[9,28]。Ki-67增殖指数高水平表达时,提示肿瘤细胞增殖活性强、瘤细胞增殖活跃,从而引起肿瘤细胞数目和体积的增加,密集排列的肿瘤细胞减少了细胞内外水分子的活动空间,最终导致水分子的扩散运动受到限制,而ADC值主要是对细胞内外水分子扩散情况的量化反映,ADC值与Ki-67增殖指数间的负相关关系,与肿瘤细胞增殖时的病理生理学改变相吻合。Gihr等[19]分析26例低级别胶质瘤ADC值与Ki-67增殖指数间的关系后发现两者之间呈显著的负相关关系,与本研究结果相一致。因此LGG患者可以通过MR检查获得的ADC值,在预测肿瘤IDH-1突变状态的同时,进一步分析肿瘤Ki-67增殖指数表达水平,以对肿瘤恶性程度进行更全面的评估。综上,本研究结果在进一步验证ADC值与Ki-67增殖指数间关系的同时,更说明了ADC值是评估LGG IDH-1突变状态时较为可靠的量化参数。

3.3 本研究的局限性

       本研究存在一定的局限性。首先,本研究为单中心的回顾性研究,纳入的患者量相对较小;其次,进行ADC值测量时选择的ROI可能存在肉眼难以分辨的微囊变区域,从而影响最终测量值的准确性,并且ADC值测量区域未能与Ki-67增殖指数计数区域保持完全一致。未来将扩大样本量、联合多个中心,开展进一步的研究。

       综上所述,本研究结果表明ADC值可用于术前评估LGG IDH-1突变状态和瘤细胞增殖活性,为患者临床治疗方案制订和预后评估提供参考依据。

[1]
Ostrom QT, Cioffi G, Gittleman H, et al. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2012-2016[J]. Neuro Oncol, 2019, 21(Suppl 5): v1-v100. DOI: 10.1093/neuonc/noz150.
[2]
Chen J, Qian X, He Y, et al. An artificial neural network model based on DNA damage response genes to predict outcomes of lower-grade glioma patients[J/OL]. Brief Bioinform, 2021, 22(6) [2021-11-14]. https://academic.oup.com/bib/article/22/6/bbab190/6278605. DOI: 10.1093/bib/bbab190.
[3]
Louis DN, Perry A, Reifenberger G, et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary[J]. Acta Neuropathol, 2016, 131(6): 803-820. DOI: 10.1007/s00401-016-1545-1.
[4]
Fukuya Y, Ikuta S, Maruyama T, et al. Tumor recurrence patterns after surgical resection of intracranial low-grade gliomas[J]. J Neurooncol, 2019, 144(3): 519-528. DOI: 10.1007/s11060-019-03250-8.
[5]
Eckel-Passow JE, Lachance DH, Molinaro AM, et al. Glioma Groups Based on 1p/19q, IDH, and TERT Promoter Mutations in Tumors[J]. N Engl J Med, 2015, 372(26): 2499-2508. DOI: 10.1056/NEJMoa1407279.
[6]
Xu S, Tang L, Dai G, et al. Immune-related genes with APA in microenvironment indicate risk stratification and clinical prognosis in grade Ⅱ/Ⅲ gliomas[J]. Mol Ther Nucleic Acids, 2021, 23: 1229-1242. DOI: 10.1016/j.omtn.2021.01.033.
[7]
Han S, Liu Y, Cai SJ, et al. IDH mutation in glioma: molecular mechanisms and potential therapeutic targets[J]. Br J Cancer, 2020, 122(11): 1580-1589. DOI: 10.1038/s41416-020-0814-x.
[8]
Li Y, Lin CY, Qi YF, et al. Three-dimensional turbo-spin-echo amide proton transfer-weighted and intravoxel incoherent motion MR imaging for type I endometrial carcinoma: Correlation with Ki-67 proliferation status[J]. Magn Reson Imaging, 2021, 78: 18-24. DOI: 10.1016/j.mri.2021.02.006.
[9]
Liu XW, Han L, Liu H, et al. Apparent Diffusion Coefficient to Evaluate Adult Intracranial Ependymomas: Relationship to Ki-67 Proliferation Index[J]. J Neuroimaging, 2021, 31(1): 132-136. DOI: 10.1111/jon.12789.
[10]
Ke XA, Zhou Q, Han L, et al. Differentiating microcystic meningioma from atypical meningioma using diffusion-weighted imaging[J]. Neuroradiology, 2020, 62(5): 601-607. DOI: 10.1007/s00234-020-02374-3.
[11]
刘泽亮, 王效春, 张辉, 等. 磁共振扩散成像在脑胶质瘤预后预测的研究进展[J]. 磁共振成像, 2021, 12(1): 77-80. DOI: 10.12015/issn.1674-8034.2021.01.017.
Liu ZL, Wang XC, Zhang H, et al. MR diffusion imaging: research advances in prognosis prediction of gliomas[J]. Chin J Magn Reson Imaging, 2021, 12(1): 77-80. DOI: 10.12015/issn.1674-8034.2021.01.017.
[12]
Zhao J, Wang YL, Li XB, et al. Comparative analysis of the diffusion kurtosis imaging and diffusion tensor imaging in grading gliomas, predicting tumour cell proliferation and IDH-1 gene mutation status[J]. J Neurooncol, 2019, 141(1): 195-203. DOI: 10.1007/s11060-018-03025-7.
[13]
Henker C, Kriesen T, Schneider B, et al. Correlation of Ki-67 Index with Volumetric Segmentation and its Value as a Prognostic Marker in Glioblastoma[J/OL]. World Neurosurg, 2019, 125 [2021-11-14]. https://www.sciencedirect.com/science/article/pii/S1878875019303699?via%3Dihub. DOI: 10.1016/j.wneu.2019.02.006.
[14]
闫新亭, 宋双双, 卢洁. 磁共振扩散加权成像在脑胶质瘤的研究进展[J]. 医学影像学杂志, 2021, 31(9): 1586-1589. DOI: 1006-9011(2021)09-1586-04.
Yan XT, Song SS, Lu J. Research progress of magnetic resonance diffusion weighted imaging in glioma[J]. Journal of Medical Imaging, 2021, 31(9): 1586-1589. DOI: 1006-9011(2021)09-1586-04.
[15]
Bai Y, Lin Y, Tian J, et al. Grading of Gliomas by Using Monoexponential, Biexponential, and Stretched Exponential Diffusion-weighted MR Imaging and Diffusion Kurtosis MR Imaging[J]. Radiology, 2016, 278(2): 496-504. DOI: 10.1148/radiol.2015142173.
[16]
Li S, Zhou Q, Zhang P, et al. The relationship between the apparent diffusion coefficient and the Ki-67 proliferation index in intracranial solitary fibrous tumor/hemangiopericytoma[J]. Neurosurg Rev, 2022, 45(2): 1625-1633. DOI: 10.1007/s10143-021-01687-y.
[17]
Xue C, Liu S, Deng J, et al. Apparent Diffusion Coefficient Histogram Analysis for the Preoperative Evaluation of Ki-67 Expression in Pituitary Macroadenoma[J]. Clin Neuroradiol, 2022, 32(1): 269-276. DOI: 10.1007/s00062-021-01134-x.
[18]
Liu X, Deng J, Sun Q, et al. Differentiation of intracranial solitary fibrous tumor/hemangiopericytoma from atypical meningioma using apparent diffusion coefficient histogram analysis[J]. Neurosurg Rev, 2022, 45(3): 2449-2456. DOI: 10.1007/s10143-022-01771-x.
[19]
Gihr GA, Horvath-Rizea D, Hekeler E, et al. Histogram Analysis of Diffusion Weighted Imaging in Low-Grade Gliomas: in vivo Characterization of Tumor Architecture and Corresponding Neuropathology[J/OL]. Front Oncol, 2020, 10 [2021-11-14]. https://www.frontiersin.org/articles/10.3389/fonc.2020.00206/full. DOI: 10.3389/fonc.2020.00206.
[20]
蒋健, 张学凌, 周俊林. 胶质瘤异柠檬酸脱氢酶基因型与影像学研究进展[J]. 磁共振成像, 2021, 12(5): 103-106. DOI: 10.12015/issn.1674-8034.2021.05.025.
Jiang J, Zhang XL, Zhou JL. Research progress of isocitrate dehydrogenase genotype and imaging in glioma[J]. Chin J Magn Reson Imagin, 2021, 12(5): 103-106. DOI: 10.12015/issn.1674-8034.2021.05.025.
[21]
Darvishi P, Batchala PP, Patrie JT, et al. Prognostic Value of Preoperative MRI Metrics for Diffuse Lower-Grade Glioma Molecular Subtypes[J]. AJNR Am J Neuroradiol, 2020, 41(5): 815-821. DOI: 10.3174/ajnr.A6511.
[22]
邓凯吉, 郑晴予, 范淑萍, 等. ADC三维直方图分析对胶质瘤IDH1基因突变的预测研究[J]. 临床放射学杂志, 2021, 40(5): 864-869. DOI: 10.13437/j.cnki.jcr.2021.05.007.
Deng KJ, Zheng QY, Fan SP, et al. Prediction of IDH1 gene mutation in glioma by ADC three-dimensional histogram analysis[J]. J Clin Radiol, 2021, 40(5): 864-869. DOI: 10.13437/j.cnki.jcr.2021.05.007.
[23]
柯晓艾, 张巧莹, 周青, 等. 磁共振征象评估间变性星形细胞瘤异柠檬酸脱氢酶-1突变状态的研究[J]. 磁共振成像, 2019, 10(7): 504-508. DOI: 10.12015/issn.1674-8034.2019.07.005.
Ke XA, Zhang QY, Zhou Q, et al. Magnetic resonance imaging assessment of isocitrate dehydrogenase 1 mutation status in degenerative astrocytoma[J]. Chin J Magn Reson Imaging, 2019, 10(7): 504-508. DOI: 10.12015/issn.1674-8034.2019.07.005.
[24]
Villanueva-Meyer JE, Wood MD, Choi BS, et al. MRI Features and IDH Mutational Status of Grade Ⅱ Diffuse Gliomas: Impact on Diagnosis and Prognosis[J]. AJR Am J Roentgenol, 2018, 210(3): 621-628. DOI: 10.2214/AJR.17.18457.
[25]
Tan WL, Huang WY, Yin B, et al. Can diffusion tensor imaging noninvasively detect IDH1 gene mutations in astrogliomas? A retrospective study of 112 cases[J]. AJNR Am J Neuroradiol, 2014, 35(5): 920-927. DOI: 10.3174/ajnr.A3803.
[26]
Walts AE, Mirocha JM, Marchevsky AM. Challenges in Ki-67assessments in pulmonary large-cell neuroendocrine carcinomas[J]. Histopathology, 2021, 78(5): 699-709. DOI: 10.1111/his.14277.
[27]
Lee JH, Yoon YC, Seo SW, et al. Soft tissue sarcoma: DWI and DCE-MRI parameters correlate with Ki-67 labeling index[J]. Eur Radiol, 2020, 30(2): 914-924. DOI: 10.1007/s00330-019-06445-9.
[28]
Richards-Taylor S, Ewings SM, Jaynes E, et al. The assessment of Ki-67 as a prognostic marker in neuroendocrine tumours: a systematic review and meta-analysis[J]. J Clin Pathol, 2016, 69(7): 612-618. DOI: 10.1136/jclinpath-2015-203340.
[29]
Wang Y, Bai G, Zhang X, et al. Correlation analysis of apparent diffusion coefficient value and P53 and Ki-67 expression in esophageal squamous cell carcinoma[J]. Magn Reson Imaging, 2020, 68: 183-189. DOI: 10.1016/j.mri.2020.01.011.
[30]
钱吉芳, 章蓉, 赵丽, 等. 三阴性与非三阴性乳腺癌的表观扩散系数与Ki-67指数的相关性研究[J]. 磁共振成像, 2021, 12(5): 69-72. DOI: 10.12015/issn.1674-8034.2021.05.015.
Qian JF, Zhang R, Zhao L, et al. Study on the correlation between MRI diffusion-weighted imaging apparent diffusion coefficient and Ki-67 index of triple negative and non-triple negative breast cancer[J]. Chin J Magn Reson Imaging, 2021, 12(5): 69-72. DOI: 10.12015/issn.1674-8034.2021.05.015.
[31]
Zeng Q, Dong F, Shi F, et al. Apparent diffusion coefficient maps obtained from high b value diffusion-weighted imaging in the preoperative evaluation of gliomas at 3T: comparison with standard b value diffusion-weighted imaging[J]. Eur Radiol, 2017, 27(12): 5309-5315. DOI: 10.1007/s00330-017-4910-0.
[32]
刘显旺, 韩蕾, 郝艳, 等. 最小表观扩散系数值评价成人颅内室管膜瘤Ki-67增殖指数的价值[J]. 磁共振成像, 2020, 11(8): 620-624. DOI: 10.12015/issn.1674-8034.2020.08.005.
Liu XW, Han L, Hao Y, et al. The value of the minimum apparent diffusion coefficient in evaluating the Ki-67 proliferation index in adult intracranial ependymoma[J]. Chin J Magn Reson Imagin, 2020, 11(8): 620-624. DOI: 10.12015/issn.1674-8034.2020.08.005.

上一篇 基于扩散峰度成像直方图构建低级别胶质瘤预后的列线图模型
下一篇 集成MRI联合三维动脉自旋标记成像鉴别胶质瘤复发和假性进展的初步研究
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2