分享:
分享到微信朋友圈
X
综述
主观认知下降的MRI研究进展
赖梓焱 张清萍 赖茵圻 梁玲艳 邓德茂

Cite this article as: Lai ZY, Zhang QP, Lai YQ, et al. MRI research progress of subjective cognitive decline[J]. Chin J Magn Reson Imaging, 2022, 13(3): 126-128, 142.本文引用格式:赖梓焱, 张清萍, 赖茵圻, 等. 主观认知下降的MRI研究进展[J]. 磁共振成像, 2022, 13(3): 126-128, 142. DOI:10.12015/issn.1674-8034.2022.03.031.


[摘要] 主观认知下降(subjective cognitive decline,SCD)是阿尔茨海默病的最早症状,发病率较高。由于缺乏客观量化的诊断金标准,SCD的诊断主要通过临床评估,容易导致误诊和延误治疗。本文就结构磁共振、功能磁共振、弥散张量成像和动脉自旋标记在SCD患者的脑结构和功能方面的应用进展进行综述。目前多模态MRI证实了SCD存在“SCD-轻度认知障碍-阿尔茨海默病”动态进展的趋势,为SCD的早期诊断、认知下降严重程度的评估和预后方面提供更多的评估信息。
[Abstract] Subjective cognitive decline (SCD) is the earliest symptom of Alzheimer's disease with a high incidence. Due to the lack of objectively quantified diagnostic gold standard, the diagnosis of SCD is mainly through clinical evaluation, which is prone to misdiagnosis and delayed treatment. This article reviewed the application of structural magnetic resonance, functional magnetic resonance, diffusion tensor imaging, and arterial spin labeling in the brain structure and function of patients with SCD. The dynamic progression trend of SCD was confirmed by multimodal MRI, providing more information for the diagnosis of SCD, the assessment of the severity of cognitive decline and the prognosis of SCD.
[关键词] 主观认知下降;阿尔茨海默病;神经影像;结构磁共振成像;功能磁共振成像;弥散张量成像
[Keywords] subjective cognitive decline;Alzheimer disease;neuroimaging;structural magnetic resonance imaging;functional magnetic resonance imaging;diffusion tensor imaging

赖梓焱 1   张清萍 1   赖茵圻 1   梁玲艳 2   邓德茂 2*  

1 广西中医药大学研究生院,南宁 530000

2 广西壮族自治区人民医院放射科,南宁 530021

邓德茂,E-mail: demaodeng@163.com

作者利益冲突声明:全部作者均声明无利益冲突。


基金项目: 国家自然科学基金 82060315,81760886,82102032
收稿日期:2021-11-03
接受日期:2022-02-18
中图分类号:R445.2  R749.16 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2022.03.031
本文引用格式:赖梓焱, 张清萍, 赖茵圻, 等. 主观认知下降的MRI研究进展[J]. 磁共振成像, 2022, 13(3): 126-128, 142. DOI:10.12015/issn.1674-8034.2022.03.031

       主观认知下降(subjective cognitive decline,SCD)是客观的神经心理检查正常时,个体主诉其认知能力较前下降的一种状态[1, 2]。SCD是阿尔茨海默病(Alzheimer disease,AD)的最早症状和防治的重要关口。《2021年世界阿尔茨海默病报告》(www.alz.co.uk)指出全球约有75%患者的痴呆症未得到诊断,是社会代价最高的长期疾病之一。因此,通过MRI探讨SCD的发病机制,探索一个客观的量化的标准来完善其诊断标准和严重程度的评估是SCD目前研究的热点。本文就MRI技术在探索SCD的脑结构和功能方面的研究进展综述如下。

1 SCD的临床概述

       由于SCD患者的客观神经心理检查正常,目前在临床中缺乏统一量化的金标准来区分SCD患者和健康人,主要使用的是全球SCD工作组定义的研究标准:(1)患者主观认为自身认知能力与之前的正常状态相比持续下降,并且与突发事件无关;(2)通过标准化认知测试的表现区分SCD、轻度认知障碍(mild cognitive impairment,MCI)或AD前驱期。排除标准是MCI、AD前驱期、痴呆、精神疾病和除了AD以外的其他神经疾病(包括药物所致的神经疾病)等[1,3]。在此基础上,对于SCD和MCI的区分建议使用综合性神经心理学测试组来评估,如简易精神状态检查、蒙特利尔认知评估、临床痴呆评级,以及基于标准差的截止值评估以上三个认知领域[1,3, 4, 5, 6]

       随着人口老龄化的进展,对认知下降的担忧正成为医疗咨询中出现频率越来越高的诉求。SCD的发病率较高,对75岁以上的人群进行调查发现约73.8%存在SCD[7],SCD的病因最常见为临床前AD[1]。与健康人群相比,SCD患者认知下降速度更快,由SCD进展成MCI约15年,由MCI进展为AD约7年[8]。纵向调查中随访4年后12%~27%的SCD患者进展为MCI,14%的患者出现痴呆,SCD患者转化成痴呆的概率比不伴有SCD的老年人多了一倍[7,9, 10]。因此SCD的诊断和发病机制的研究对防治AD极为重要。而通过结构磁共振成像(structural MRI,sMRI)、功能磁共振成像(functional MRI,fMRI)、弥散张量成像(diffusion tensor imaging,DTI)、动脉自旋标记(arterial spin labeling,ASL)等MRI技术的研究,我们能为SCD的诊断、认知下降严重程度的评估和预后方面提供更多的评估信息。

2 sMRI

       sMRI可以测量大脑皮层的体积及厚度,量化脑的结构性变化。本研究总结以往研究结果表明SCD患者大脑皮质的萎缩程度与认知下降的进展相关[11]。Lim等[12]研究显示SCD患者根据其预后表现出不同的皮质变薄模式,进展为痴呆的SCD患者在AD易感区域表现出特征性皮质萎缩。具有异常AD特征性萎缩模式的SCD个体,大多数表现出遗忘特征[13]。有研究表明APOEε基因型和焦虑症状是SCD皮质表面积减少的修饰因素[14]。并且对前文提及的具有“SCD-plus”特征的患者进行研究发现其存在AD相似的独特的认知和脑容量特征,因此支持在基于人群的队列中使用“SCD-plus”概念作为富集标准[15]。不过在对社区和临床医院的不同样本研究中显示,SCD社区个体的萎缩区域与AD典型区域相似,而临床个体的萎缩模式更为复杂,涉及整个大脑和整个皮质厚度,包括丘脑、放射冠和胆碱能基底核等[16]。SCD与胆碱能基底前脑和海马CA1区的体积显著减少有关,海马亚区体积的变化趋势进一步说明SCD是早于MCI的AD临床前阶段[17, 18]。但也有多中心队列研究得出不同的结论,他们认为胆碱能基底前脑的体积在MCI、AD患者和健康老年人之间有显著差异,但在SCD和健康老年人之间中差异并不明显[19]。sMRI不仅可以测量区域的结构变化,还可以基于sMRI绘制全脑灰质与种子区域的相关性图,构建灰质结构协方差网络。灰质网络组织的随机与中断和认知功能下降程度、淀粉样蛋白病变之间存在密切相关[20, 21, 22, 23]。更有研究证明与健康老年人相比,SCD组锚定于默认模式网络(default mode network,DMN)、突显网络和执行控制网络的灰质结构协方差明显减少,锚定于海马的灰质结构协方差按“健康人-SCD-MCI-AD”顺序动态性排列[24]。通过sMRI技术,我们能从区域结构和灰质网络方面对结构变化进行量化,证实了SCD患者在皮质萎缩、脑容量缩小方面存在“SCD-MCI-AD”的趋势,尤其在海马、DMN、突显网络和执行控制网络脑区,并且具有“SCD-plus”特征的患者更可能进展为AD。在对SCD进行研究时,鉴于社区或临床的不同来源患者脑萎缩模式存在差别,可能需要进行筛选。

3 fMRI

       fMRI利用神经元活动所引发的血氧合度依赖的信号对比,能检测神经元的活性状态,评价其是否存在功能异常。它根据是否执行任务可以分为静息态fMRI (resting-state fMRI,rs-fMRI)和任务态fMRI (task-based fMRI,task-fMRI),主要研究脑局部自发神经活动、功能连接和网络分析。rs-fMRI能够对患者在无任务激活时的脑神经功能状态进行评价,从而与健康对照组进行比较,实验设计相对任务态更简单便捷,受试者依从性好。而task-fMRI可以观察患者在执行如记忆、语言、空间导航等特定任务时的脑神经活动异常,能通过研究特定脑区及脑网络的异常,对于临床治疗及分类有所帮助,但是在扫描时需要受试者的配合。

3.1 rs-fMRI

       在AD谱系的研究中发现,SCD、MCI和AD的认知表现、区域性灰质萎缩模式和功能连通性存在差异,认知域评分与区域萎缩和网络特异性功能连接之间存在关联[25]。Wang等[26]研究发现SCD和MCI患者的舌回和额上回的低频振幅(amplitude of low frequency fluctuation,ALFF)值上升,两者具有相似的异常激活。SCD患者在后记忆系统各区域的平均功能连接较低,尤其在后扣带回-楔前叶[27]。联合应用局域一致性和功能连接的分析方法发现SCD患者异常的脑区主要在DMN,并且脑区异常可能最早发生于后扣带回、楔前叶[28]。有研究表明SCD患者DMN和海马之间的功能连接降低[29]。与之相反,另一项研究发现SCD患者双侧海马旁回和其他DMN相关区域之间的局部和中期连接增加,这可能反映了在SCD个体中保留记忆性能的补偿机制[30]。此外,动态功能连接可以量化脑网络随时间的变化,有利于探索神经退行性疾病的动态脑改变。最新的研究也表明SCD患者中DMN主导的动态功能连接和动态ALFF与MCI存在显著差异[4]。除了DMN以外,SCD和MCI在突显网络和执行控制网络中与健康老年人相比动态功能连接变异性均有改变[31]。而与传统rs-fMRI相比,动态网络连通性在鉴别SCD和健康人时更准确[32]。总的来说,SCD在静息状态下脑自发神经活动、功能连接和网络分析的异常主要位于海马和DMN,与记忆系统相关。除了神经活动的下降或连接中断,可能还存在一定的代偿机制,进行动态观察研究能更准确地进行SCD的识别和诊断,敏感性更高。

3.2 task-fMRI

       task-fMRI通过检测血氧水平依赖信号的变化来探索人在进行不同活动时神经活动的变化。主观记忆下降是SCD的重要特征,通过记忆任务的执行能区分SCD、MCI和健康老年人。对这三个人群进行编码及情景记忆任务的研究[33]显示正确率为健康老年人组>SCD组>MCI组进一步证实了这一点。MRI全脑分析显示,SCD患者在执行记忆任务时枕叶、顶上小叶和后扣带表现出较低的后续记忆效果,在DMN区域(包括后扣带回、楔前叶和腹内侧前额叶皮层)表现出更负面的后续记忆影响[34]。Zhang等[35]发现SCD患者在进行工作记忆任务时额叶的血管和代谢反应受损,从而导致了血氧水平依赖信号的过度激活。此外,SCD在执行嗅觉相关任务时双侧初级嗅觉皮层的激活降低,嗅觉系统与DMN的功能连接显著减弱[36]。在进行空间导航任务时,空间导航网络内的后扣带回和右侧前额叶皮质之间、右侧后扣带回和右侧海马间的功能连接降低,这种功能连接的降低在区分SCD个体和健康对照方面具有较高的诊断效率[6]。这些研究表明,SCD的神经信息处理中断不仅与记忆有关,而且还会扩展到其他功能的执行。通过task-fMRI可以敏感且客观地观察到其执行特定功能时的神经活动异常,甚至可以通过特定网络的中断对SCD和健康人进行较准确区别,有助于SCD的分类。

4 DTI

       DTI作为扩散加权成像的深化和发展,通过描述水分子的扩散特征能观察和追踪脑白质的变性,主要的参数有平均弥散率(mean diffusivity,MD)、部分各向异性分数(fractional anisotropy,FA)、各向异性模式、径向扩散系数和轴向扩散。SCD患者存在广泛脑区的FA下降和MD升高,主要包括海马、上下纵束、钩状束、胼胝体压部和扣带回[26,37, 38, 39]。而且蒙特利尔认知评分与双侧小脑下脚和右侧皮质脊髓束的MD相关,特定白质束的退化是SCD身体认知功能减退的共同发展过程[40]。除了观察SCD患者的脑白质变性,DTI技术还可以与其他技术相结合从多角度深入研究SCD患者的脑结构和功能改变。脑内β淀粉样蛋白(Aβ)和tau神经纤维缠结的积累是AD的典型病理特征。通过DTI结合tau正电子发射断层成像技术对MCI和SCD患者进行研究,证实了tau蛋白异常和白质变性之间存在联系[41]。通过sMRI结合DTI可以研究灰质和白质神经退行性变间的相互作用,证实了更多的主观认知主诉与海马、额叶、颞叶和岛叶的体积变小、白质MD增高相关[42]。结合fMRI和DTI分析显示SCD患者的大脑连通性、兴奋性和白质完整性明显低于健康老年人[43]。DTI在鉴别MCI的Aβ阳性病例与Aβ阴性对照的准确率高达80%,相比之下,SCD患者仅在各向异性模式显示出空间受限的白质改变,DTI对SCD的Aβ阳性和阴性病例的识别没有价值[44]。而最近一项基于rs-MRI和扩散加权成像数据的自动加权集中数据多任务学习在鉴别诊断健康人、SCD和MCI时临床结果吻合良好。因此,通过DTI相关研究可以得出特异性白质束的退变与“SCD-MCI-AD”过程中认知功能下降和病理进展相关。通过DTI追踪SCD特异性白质束的退变,结合其他MRI技术对提高诊断和鉴别诊断SCD的准确性有所帮助。

5 ASL

       ASL是通过磁化标记动脉血中氢质子来量化脑血流灌注的无创技术,其能获得脑血流量(cerebral blood flow,CBF)这一衡量脑功能的重要指标。与健康老年人相比,AD及MCI存在广泛脑灌注减少,而SCD在尾状核、壳核及丘脑区域CBF值增高[45]。也有研究显示SCD在海马和后扣带皮层的CBF降低[46]。Hays等[47]观察到在SCD患者中非文字记忆与扣带回后部、颞中回、海马、梭状回和额下回的CBF呈负相关。而Leeuwis等[48]没有观察到SCD患者的CBF和认知之间存在相关性。当前应用ASL来探讨SCD的相关研究比较少,结论存在一定的争议。现有的研究支持SCD的局部脑区存在CBF的降低和灌注代偿,但与认知之间的关系尚未明确,还有待进一步探讨。

6 总结

       AD的早期临床阶段为SCD,主要表现在AD易感区域和相关脑网络的结构和功能异常,与MCI、AD具有类似的神经病理模式。在结构方面sMRI及DTI可证实SCD患者在皮质萎缩、脑容量缩小及白质退变方面存在“SCD-MCI-AD”动态进展的趋势,对量化疾病的严重程度有所帮助。而功能方面动态脑网络和task-fMRI在识别SCD时更为敏感,与患者的临床症状及表现相关,有助于患者的分类。多模态MRI能够提高SCD诊断和鉴别诊断的准确性,探索客观量化的影像学生物标记是SCD目前研究的热点。未来需要对SCD患者脑的结构和功能特征进行更深入研究,尤其是纵向评估和人工智能相结合的研究还有待开展。

[1]
Jessen F, Amariglio RE, van Boxtel M, et al. A conceptual framework for research on subjective cognitive decline in preclinical Alzheimer's disease[J]. Alzheimers Dement, 2014, 10(6): 844-852. DOI: 10.1016/j.jalz.2014.01.001.
[2]
Lin Y, Shan PY, Jiang WJ, et al. Subjective cognitive decline: preclinical manifestation of Alzheimer's disease[J]. Neurol Sci, 2019, 40(1): 41-49. DOI: 10.1007/s10072-018-3620-y.
[3]
Jessen F, Amariglio RE, Buckley RF, et al. The characterisation of subjective cognitive decline[J]. Lancet Neurol, 2020, 19(3): 271-278. DOI: 10.1016/S1474-4422(19)30368-0.
[4]
Liang LY, Yuan YM, Wei YC, et al. Recurrent and concurrent patterns of regional BOLD dynamics and functional connectivity dynamics in cognitive decline[J]. Alzheimers Res Ther, 2021, 13(1): 28. DOI: 10.1186/s13195-020-00764-6.
[5]
Cheng CH, Wang PN, Mao HF, et al. Subjective cognitive decline detected by the oscillatory connectivity in the default mode network: a magnetoencephalographic study[J]. Aging (Albany NY), 2020, 12(4): 3911-3925. DOI: 10.18632/aging.102859.
[6]
Chen Q, Qing Z, Jin JX, et al. Ego- and allo-network disconnection underlying spatial disorientation in subjective cognitive decline[J]. Cortex, 2021, 137: 35-48. DOI: 10.1016/j.cortex.2020.12.022.
[7]
van Harten AC, Mielke MM, Swenson-Dravis DM, et al. Subjective cognitive decline and risk of MCI: the Mayo Clinic Study of Aging[J]. Neurology, 2018, 91(4): e300-e312. DOI: 10.1212/WNL.0000000000005863.
[8]
Reisberg B, Shulman MB, Torossian C, et al. Outcome over seven years of healthy adults with and without subjective cognitive impairment[J]. Alzheimers Dement, 2010, 6(1): 11-24. DOI: 10.1016/j.jalz.2009.10.002.
[9]
Mitchell AJ, Beaumont H, Ferguson D, et al. Risk of dementia and mild cognitive impairment in older people with subjective memory complaints: meta-analysis[J]. Acta Psychiatr Scand, 2014, 130(6): 439-451. DOI: 10.1111/acps.12336.
[10]
Wolfsgruber S, Polcher A, Koppara A, et al. Cerebrospinal fluid biomarkers and clinical progression in patients with subjective cognitive decline and mild cognitive impairment[J]. J Alzheimers Dis, 2017, 58(3): 939-950. DOI: 10.3233/JAD-161252.
[11]
陈娅, 韦懿宸, 段高雄, 等. 主观认知下降的临床及神经影像学进展[J]. 临床放射学杂志, 2020, 39(5): 1028-1031. DOI: 10.13437/j.cnki.jcr.2020.05.041.
Chen Y, Wei YC, Duan GX, et al. Clinical and neuroimaging advances in subjective cognitive decline [J]. J Clin Radiol, 2020, 39(5): 1028-1031. DOI: 10.13437/j.cnki.jcr.2020.05.041.
[12]
Lim EY, Shim YS, Hong YJ, et al. Different cortical thinning patterns depending on their prognosis in individuals with subjective cognitive decline[J]. Dement Neurocogn Disord, 2019, 18(4): 113-121. DOI: 10.12779/dnd.2019.18.4.113.
[13]
Diaz-Galvan P, Ferreira D, Cedres N, et al. Comparing different approaches for operationalizing subjective cognitive decline: impact on syndromic and biomarker profiles[J]. Sci Rep, 2021, 11(1): 4356. DOI: 10.1038/s41598-021-83428-1.
[14]
Sun Y, Wang XN, Wang YS, et al. Anxiety correlates with cortical surface area in subjective cognitive decline: APOE ε4 carriers versus APOE ε4 non-carriers[J]. Alzheimers Res Ther, 2019, 11(1): 50. DOI: 10.1186/s13195-019-0505-0.
[15]
Sánchez-Benavides G, Grau-Rivera O, Suárez-Calvet M, et al. Brain and cognitive correlates of subjective cognitive decline-plus features in a population-based cohort[J]. Alzheimers Res Ther, 2018, 10(1): 123. DOI: 10.1186/s13195-018-0449-9.
[16]
Pini L, Wennberg AM. Structural imaging outcomes in subjective cognitive decline: community vs. clinical-based samples[J]. Exp Gerontol, 2021, 145: 111216. DOI: 10.1016/j.exger.2020.111216.
[17]
Zhao WN, Wang XT, Yin CH, et al. Trajectories of the hippocampal subfields atrophy in the Alzheimer's disease: a structural imaging study[J]. Front Neuroinform, 2019, 13: 13. DOI: 10.3389/fninf.2019.00013.
[18]
Scheef L, Grothe MJ, Koppara A, et al. Subregional volume reduction of the cholinergic forebrain in subjective cognitive decline (SCD)[J]. Neuroimage Clin, 2019, 21: 101612. DOI: 10.1016/j.nicl.2018.101612.
[19]
Herdick M, Dyrba M, Fritz HJ, et al. Multimodal MRI analysis of basal forebrain structure and function across the Alzheimer's disease spectrum[J]. Neuroimage Clin, 2020, 28: 102495. DOI: 10.1016/j.nicl.2020.102495.
[20]
Verfaillie SCJ, Slot RER, Dicks E, et al. A more randomly organized grey matter network is associated with deteriorating language and global cognition in individuals with subjective cognitive decline[J]. Hum Brain Mapp, 2018, 39(8): 3143-3151. DOI: 10.1002/hbm.24065.
[21]
Tijms BM, Ten Kate M, Gouw AA, et al. Gray matter networks and clinical progression in subjects with predementia Alzheimer's disease[J]. Neurobiol Aging, 2018, 61: 75-81. DOI: 10.1016/j.neurobiolaging.2017.09.011.
[22]
Pelkmans W, Ossenkoppele R, Dicks E, et al. Tau-related grey matter network breakdown across the Alzheimer's disease continuum[J]. Alzheimers Res Ther, 2021, 13(1): 138. DOI: 10.1186/s13195-021-00876-7.
[23]
Ten Kate M, Visser PJ, Bakardjian H, et al. Gray matter network disruptions and regional amyloid beta in cognitively normal adults[J]. Front Aging Neurosci, 2018, 10: 67. DOI: 10.3389/fnagi.2018.00067.
[24]
Fu ZR, Zhao MY, He YR, et al. Divergent connectivity changes in gray matter structural covariance networks in subjective cognitive decline, amnestic mild cognitive impairment, and Alzheimer's disease[J]. Front Aging Neurosci, 2021, 13: 686598. DOI: 10.3389/fnagi.2021.686598.
[25]
Amaefule CO, Dyrba M, Wolfsgruber S, et al. Association between composite scores of domain-specific cognitive functions and regional patterns of atrophy and functional connectivity in the Alzheimer's disease spectrum[J]. Neuroimage Clin, 2021, 29: 102533. DOI: 10.1016/j.nicl.2020.102533.
[26]
Wang SY, Rao J, Yue YY, et al. Altered frequency-dependent brain activation and white matter integrity associated with cognition in characterizing preclinical Alzheimer's disease stages[J]. Front Hum Neurosci, 2021, 15: 625232. DOI: 10.3389/fnhum.2021.625232.
[27]
Viviano RP, Hayes JM, Pruitt PJ, et al. Aberrant memory system connectivity and working memory performance in subjective cognitive decline[J]. Neuroimage, 2019, 185: 556-564. DOI: 10.1016/j.neuroimage.2018.10.015.
[28]
汪腾龙, 赵幸福, 吴越, 等. 主观认知下降患者静息态磁共振局部一致性与功能连接研究[J]. 中华老年医学杂志, 2021, 40(1): 72-75. DOI: 10.3760/cma.j.issn.0254-9026.2021.01.010.
Wang TL, Zhao XF, Wu Y, et al. The study on the combined regional homogeneity and functional connectivity of resting-state magnetic resonance in patients with subjective cognitive decline[J]. Chin J Geriatr, 2021, 40(1): 72-75. DOI: 10.3760/cma.j.issn.0254-9026.2021.01.010.
[29]
Dillen KNH, Jacobs HIL, Kukolja J, et al. Functional disintegration of the default mode network in prodromal Alzheimer's disease[J]. J Alzheimers Dis, 2017, 59(1): 169-187. DOI: 10.3233/JAD-161120.
[30]
Chen HF, Sheng XN, Luo CM, et al. The compensatory phenomenon of the functional connectome related to pathological biomarkers in individuals with subjective cognitive decline[J]. Transl Neurodegener, 2020, 9(1): 21. DOI: 10.1186/s40035-020-00201-6.
[31]
Xue C, Qi WZ, Yuan QQ, et al. Disrupted dynamic functional connectivity in distinguishing subjective cognitive decline and amnestic mild cognitive impairment based on the triple-network model[J]. Front Aging Neurosci, 2021, 13: 711009. DOI: 10.3389/fnagi.2021.711009.
[32]
Dong GZ, Yang L, Li CR, et al. Dynamic network connectivity predicts subjective cognitive decline: the Sino-Longitudinal Cognitive impairment and dementia study[J]. Brain Imaging Behav, 2020, 14(6): 2692-2707. DOI: 10.1007/s11682-019-00220-6.
[33]
张馨月. 主观认知障碍患者的情景记忆与工作记忆研究[D]. 重庆: 西南大学, 2019.
Zhang XY. Study on episodic memory and working memory of subjective cognitive impairment[D]. Chongqing: Southwest University, 2019.
[34]
Hayes JM, Tang LF, Viviano RP, et al. Subjective memory complaints are associated with brain activation supporting successful memory encoding[J]. Neurobiol Aging, 2017, 60: 71-80. DOI: 10.1016/j.neurobiolaging.2017.08.015.
[35]
Zhang YY, du WY, Yin YY, et al. Impaired cerebral vascular and metabolic responses to parametric N-back tasks in subjective cognitive decline[J]. J Cereb Blood Flow Metab, 2021, 41(10): 2743-2755. DOI: 10.1177/0271678X211012153.
[36]
吴思楚, 陆加明, 王军霞, 等. 基于功能MRI研究主观认知下降患者初级嗅觉皮层的神经活动[J]. 中华放射学杂志, 2019, 53(8): 678-684. DOI: 10.3760/cma.j.issn.1005?1201.2019.08.004.
Wu SC, Lu JM, Wang JX, et al. The study of functional MRI on neuronal activity of primary olfactory cortex in patients with subjective cognitive decline[J]. Chin J Radiol, 2019, 53(8): 678-684. DOI: 10.3760/cma.j.issn.1005?1201.2019.08.004.
[37]
Brueggen K, Dyrba M, Cardenas-Blanco A, et al. Structural integrity in subjective cognitive decline, mild cognitive impairment and Alzheimer's disease based on multicenter diffusion tensor imaging[J]. J Neurol, 2019, 266(10): 2465-2474. DOI: 10.1007/s00415-019-09429-3.
[38]
Fan LY, Lai YM, Chen TF, et al. Diminution of context association memory structure in subjects with subjective cognitive decline[J]. Hum Brain Mapp, 2018, 39(6): 2549-2562. DOI: 10.1002/hbm.24022.
[39]
Ohlhauser L, Parker AF, Smart CM, et al. White matter and its relationship with cognition in subjective cognitive decline[J]. Alzheimers Dement (Amst), 2019, 11: 28-35. DOI: 10.1016/j.dadm.2018.10.008.
[40]
Wei YC, Hsu CH, Huang WY, et al. White matter integrity underlies the physical-cognitive correlations in subjective cognitive decline[J]. Front Aging Neurosci, 2021, 13: 700764. DOI: 10.3389/fnagi.2021.700764.
[41]
Wen QT, Risacher SL, Xie LH, et al. Tau-related white-matter alterations along spatially selective pathways[J]. Neuroimage, 2021, 226: 117560. DOI: 10.1016/j.neuroimage.2020.117560.
[42]
Cedres N, Diaz-Galvan P, Diaz-Flores L, et al. The interplay between gray matter and white matter neurodegeneration in subjective cognitive decline[J]. Aging (Albany NY), 2021, 13(16): 19963-19977. DOI: 10.18632/aging.203467.
[43]
Fogel H, Levy-Lamdan O, Zifman N, et al. Brain network integrity changes in subjective cognitive decline: a possible physiological biomarker of dementia[J]. Front Neurol, 2021, 12: 699014. DOI: 10.3389/fneur.2021.699014.
[44]
Teipel SJ, Kuper-Smith JO, Bartels C, et al. Multicenter tract-based analysis of microstructural lesions within the Alzheimer's disease spectrum: association with amyloid pathology and diagnostic usefulness[J]. J Alzheimers Dis, 2019, 72(2): 455-465. DOI: 10.3233/JAD-190446.
[45]
李栋学, 徐超, 曾宪春, 等. 动脉自旋标记技术定量分析阿尔茨海默病不同阶段脑血流量[J]. 中国医学影像技术, 2021, 37(2): 194-199. DOI: 10.13929/j.issn.1003-3289.2021.02.008.
Li DX, Xu C, Zeng XC, et al. Arterial spin labeling quantitative analysis of cerebral blood flow in different stages of Alzheimer disease[J]. Chin J Med Imaging Technol, 2021, 37(2): 194-199. DOI: 10.13929/j.issn.1003-3289.2021.02.008.
[46]
Yang ZX, Rong Y, Cao Z, et al. Microstructural and cerebral blood flow abnormalities in subjective cognitive decline plus: diffusional kurtosis imaging and three-dimensional arterial spin labeling study[J]. Front Aging Neurosci, 2021, 13: 625843. DOI: 10.3389/fnagi.2021.625843.
[47]
Hays CC, Zlatar ZZ, Campbell L, et al. Subjective cognitive decline modifies the relationship between cerebral blood flow and memory function in cognitively normal older adults[J]. J Int Neuropsychol Soc, 2018, 24(3): 213-223. DOI: 10.1017/S135561771700087X.
[48]
Leeuwis AE, Benedictus MR, Kuijer JPA, et al. Lower cerebral blood flow is associated with impairment in multiple cognitive domains in Alzheimer's disease[J]. Alzheimers Dement, 2017, 13(5): 531-540. DOI: 10.1016/j.jalz.2016.08.013.

上一篇 中医治疗轻度认知障碍的静息态功能磁共振成像研究进展
下一篇 基于链接独立成分分析的神经精神疾病多模态MRI研究进展
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2